
GRAPHILER: A COMPILER FOR GRAPH NEURAL NETWORKS

Zhiqiang Xie 1 2 Zihao Ye 2 Minjie Wang 2 Zheng Zhang 2 Rui Fan 1

ABSTRACT
Graph neural networks (GNNs) are a powerful and versatile machine learning technique, but programming and
computing with GNNs pose a number of challenges. Current GNNs frameworks are based on a message passing
paradigm, and allow the concise expression of GNN models using built-in primitives and user defined functions
(UDFs). However, while built-in primitives offer high performance, they are limited in their expressiveness.
Meanwhile, UDFs are flexible, but often have low performance and run out of memory on large graphs. In this
paper, we propose Graphiler, a compiler stack for GNNs which achieves high performance and provides a flexible
programming interface. We first show how to represent message passing processes as data flow graphs (DFGs),
then apply a number of optimizations to improve efficiency and reduce memory footprint, and finally implement a
set of high performance extended primitives to execute the DFGs. Experiments show Graphiler can accelerate a
GNN model programmed with UDFs by up to two orders of magnitude, and achieves performance close to or
sometimes faster than expert designed implementations using built-in primitives.

1 INTRODUCTION

Graph neural networks (GNNs) have recently achieved state-
of-the-art performance in a variety of application domains,
including recommendation systems (Ying et al., 2018), drug
discovery (Chen et al., 2018a), combinatorial optimization
(Li et al., 2018) and others. GNNs combine operations
from deep neural networks (DNNs) with iterative graph
propagation and compute features on nodes using neural
networks and features from neighboring nodes and edges.
GNNs can be characterized by a message passing paradigm
(Gilmer et al., 2017; Hamilton et al., 2017) consisting of
three stages: message creation, message aggregation and
feature update. This simple yet powerful formulation allows
for concisely expressing a broad range of GNN models, and
has been adopted by a number of popular GNN frameworks,
including DGL (Wang et al., 2019b), PyG (Fey & Lenssen,
2019), PGL (PGL, 2019) and Graph Nets (Battaglia et al.,
2018).

These frameworks, however, face several key challenges in
terms of performance and flexibility. In particular, to allow
users to easily build and experiment with novel GNN archi-
tectures, several existing frameworks allow the creation of
user-defined functions (UDFs). UDFs can be programmed
using standard tensor operations which users are familiar

1ShanghaiTech University 2Amazon Web Services. Correspon-
dence to: Zhiqiang Xie <xiezhq@shanghaitech.edu.cn>, Minjie
Wang <minjiw@amazon.com>.

Proceedings of the First MLSys Workshop on Graph Neural Net-
works and Systems (GNNSys’21) , San Jose, CA, USA, 2021.
Copyright 2021 by the author(s).

with, while details of the graph operations are hidden by the
frameworks. But while this design provides a simple way
to construct a GNN model, naive implementations of UDFs
by users often result in greatly reduced performance as well
as out of memory errors due to redundant computation and
memory access and excessive data materialization (Huang
et al., 2021). In addition, to support complex UDFs involv-
ing nonstandard graph operations, current practices (Wang
et al., 2019b) transform the graph operations into many
small tensor operations supported by DNN frameworks, re-
sulting in significant overhead from excessive function calls
which further degrades performance.

To achieve higher performance, current GNN frame-
works provide a limited set of built-in primitives based
on highly efficient sparse matrix operations, such as
message and aggregate in PyG and the GSPMM / GSD-
DMM functions in DGL. These primitives are also used by
framework developers to construct built-in modules. How-
ever, it is nontrivial for ordinary users to build nonstandard
GNN models using these primitives due to the limited ex-
pressiveness they offer. Furthermore, it is even more chal-
lenging for users to optimize their models for efficiency, as
doing so requires expertise in both graph and neural net-
work computations as well as in-depth understanding of the
primitives and their implementations.

Given the fundamental limitations of both UDFs and built-
in primitives in current GNN frameworks, we propose
Graphiler, a GNN compiler which automatically compiles
GNNs defined using UDFs into a set of high performance
primitives which can be executed using efficient execution

Graphiler

plans. Graphiler first transforms a GNN program containing
multiple UDFs into a special computational graph we term a
message passing data flow graph (MP-DFG). This combines
message passing semantics with data flow graphs, and serves
as the intermediate representation of Graphiler. Graphiler
then optimizes the MP-DFG using various message pass-
ing specific optimizations including operator reordering,
operator split and concatenation, graph operator lowering
and kernel fusion to eliminate redundant computation and
memory accesses and reduce memory consumption. Finally,
a high performance execution plan consisting of extended
primitives is generated.

To evaluate the effectiveness of Graphiler, we use it to com-
pile four GNN models written by non-expert users. After
negligible code modifications, we show that Graphiler can
accelerate the models by up to two orders of magnitude, and
can achieve performance which is close to or sometimes su-
perior to those from careful implementations of the models
by expert users using high performance built-in primitives.
To the best of our knowledge, Graphiler is the first com-
piler stack built for GNNs which utilizes message passing
semantics as part of its optimization passes to achieve high
performance without restricting users to a limited set of
built-in primitives.

2 BACKGROUND & MOTIVATION

In this section we provide an overview of the message pass-
ing paradigm for GNNs, then discuss in detail some prob-
lems faced by current implementations of the paradigm.

2.1 Message Passing Paradigm for GNNs

Let G = (V, E) be a graph with the set of nodes V and the
set of edges E . Let xu, xv ∈ Rfv denote the feature vectors
for nodes u and v, and we ∈ Rfe the feature vector for an
edge (u, e, v)1. The message passing paradigm for GNNs
consists of three stages:

me = φ (xu, xv, we) , (u, e, v) ∈ E ,
hv = ρ ({me : (u, e, v) ∈ E}) ,

xnewv = ψ (xv, hv) , v ∈ V.

Message creation Each edge produces a message by ap-
plying an edge-wise message function φ to its own
features and the features of incident nodes.

Message aggregation Each node aggregates the messages
from incoming edges using an aggregation function ρ.

Feature update Each node updates its features using a
node-wise update function ψ.

1We follow the notation adopted in (Wang et al., 2019b), where
e represents the ID of this edge.

2.2 Performance Problems of User-Defined Functions

The flexible choice of the message function φ, aggregation
function ρ and update function ψ is key to the success of
GNNs. To support complex, novel GNN models, existing
GNN frameworks allow users to program using user-defined
functions (UDFs). While the node-wise update function ψ
is typically straightforward to implement, since it is only
applied to a node’s own data, the φ and ρ functions require
careful design, as they may cause redundant computations
and require trading off between flexibility and performance.

2.2.1 Redundancy

Since all edges have a single source and single destination
node, the inputs to the message creation function φ have
the same size on every edge. Thus, existing frameworks
use scatter or similar operations to broadcast data from
nodes onto edges to enable message creation UDFs to be
programmed using tensor operations.

However, this design comes with a cost: not only do scatter
operations consume O(|E|) amount of memory and band-
width, but subsequent operations on edge data perform re-
dundant computations and memory accesses, increasing
these costs from O(|V|) to O(|E|). As we show later, these
redundant operations can significantly hurt overall perfor-
mance.

2.2.2 Flexibility and Performance Trade-off

Unlike the update and message UDFs, aggregation UDFs
generally cannot be directly transformed to dense tensor
operations because nodes can have different numbers of
incoming edges. Different GNN frameworks deal with this
issue using a trade-off between flexibility and performance.

• PyG only provides a limited set of built-in aggregation
functions implemented in specialized CPU/GPU ker-
nels. While this approach offers excellent performance,
it is also restrictive and requires significant user effort
because users need to decompose their aggregation
UDFs into a combination of built-in aggregators and
primitives.

• PGL and Graph Nets provide ragged tensors as a ver-
satile data structure for aggregation UDFs. A ragged
tensor consists of a data array to store incoming mes-
sages in a contiguous memory block and an auxiliary
index array to mark the neighbor segments of each
node. However, operator support for ragged tensors is
currently limited, as implementing high performance
kernels for ragged tensors is sometimes challenging. In
addition, users need to manage both ragged and dense
tensor which complicates code maintenance.

• DGL provides users both with a set of built-in aggre-
gation functions, as well as the ability to write aggre-
gation UDFs using dense operators provided by the

Graphiler

underlying deep learning framework. In order to lever-
age the rich operator set for dense tensors, DGL groups
nodes with the same in-degree into a single bucket for
execution. However, this can result in a large num-
ber of small buckets, especially in real world graphs
with skew degree distributions, and can cause signifi-
cant performance degradation due to the overhead from
launching a large number of CPU / GPU kernels.

Beyond individual UDFs, there are further optimization op-
portunities when considering multiple UDFs together. For
example, DGL has shown that fusing message and aggrega-
tion UDFs to avoid materialization of edge message data can
substantially reduce memory footprint and bandwidth con-
sumption. (Huang et al., 2021) points out that segmenting a
GNN computation into multiple built-in primitives causes
redundancy in memory accesses and overhead from exces-
sive function calls. Such optimizations require expertise
in both GNN workloads as well as in-depth understanding
of low-level implementations. The increasing complexity
of optimizing GNN performance calls for a systematic ap-
proach to enable and manage optimizations.

3 A RUNNING EXAMPLE

In the remainder of the paper, we take the widely used
graph attention network (GAT) (Velickovic et al., 2018)
as a running example to illustrate the design of Graphiler
and show step-by-step how it constructs and optimizes an
MP-DFG. GAT introduces an attention mechanism as a
substitute for statically normalized convolution operations,
and can be formulated as follows:

z
(l)
i = W (l)h

(l)
i , (1)

e
(l)
ij = LeakyReLU(−→a (l)T (z

(l)
i ||z

(l)
j)), (2)

α
(l)
ij =

exp(e
(l)
ij)∑

k∈N (i) exp(e
(l)
ik)

, (3)

r
(l)
i =

∑
j∈N (i)

α
(l)
ij z

(l)
j , (4)

h
(l+1)
i = σ(r

(l)
i). (5)

Equations (1) and (2) belong to message creation stage and
prepare messages z and e on each edge. Equations (3) and
(4) belong to aggregation stage, where each node receives
messages from incoming edges and produces an aggregated
result r. Equation (5) occurs in the aggregation stage, where
each node’s feature h is updated by an activation function σ.
These formulas can be expressed programmatically using
the UDFs in Listing 1.

4 DESIGN OF GRAPHILER

The observations in §2 motivate Graphiler, a compiler stack
for GNNs which achieves high performance and provides a

def message_func(edges):
equation (1)
z_src = W * edges.src['h']
z_dst = W * edges.dst['h']
equation (2)
z_concat = concat(z_src, z_dst, dim=1)
a = W_attention * z_concat
e = leaky_relu(a)
return {'z': z_src, 'e': e}

def aggregation_func(message):
equation (3)
alpha = softmax(message['e'], dim=1)
equation (4)
x = alpha * message['z']
h = sum(x, dim=1)
return {'h': h}

def update_func(nodes):
equation (5)
return {'h': relu(nodes.data['h'])}

Listing 1: Pseudo code of GAT.

Graphiler

MP‐DFG
Optimizer

GNN Programs
(DGL) MP‐DFG Execution Plan DNN Runtime

(PyTorch)

Optimization
Patterns

Extended
Primitives

Figure 1. Overall workflow of Graphiler.

flexible programming interface. Graphiler adopts message
passing data flow graphs (MP-DFGs) as an intermediate rep-
resentation, which extends DFGs for ordinary DNN models
using message passing semantics. In §4.1, we show to con-
struct an MP-DFG for GAT’s message creation, aggregation
and update UDFs. In §4.2, we describe how to deal with the
redundant computations and high memory usage problems
discussed in §2.2 using a set of optimization passes on the
MP-DFG. Finally, in §4.3, we describe how to extend the
primitives set provided by existing frameworks to cover a
larger family of graph operations, such as segmented oper-
ators and coarse-grain fused primitives. The output of this
process is a set of extended primitives, from which an effi-
cient execution plan will be generated. Figure 1 summarizes
the overall workflow of Graphiler.

4.1 Message Passing Data Flow Graph Builder

Graphiler first converts a GNN model, such as the one shown
in Listing 1 for the GAT model, into an MP-DFG, such as
the one shown in Figure 2a. A key operation in nearly all
GNNs is data movement between nodes and edges, and
existing GNN frameworks generally provide interfaces to
implicitly or explicitly specify these movements. By lever-
aging the semantics of these operations, Graphiler can insert
corresponding graph operators and infer properties about
data and operators in the MP-DFG.

Graphiler

h_dstScatter

W

Matmul

Scatter h_src Matmul

z_dst

z_src

Concat z_cat

W_atten

Matmul

h_agge

h

Leaky_relu

e

a

alphaMulSumRelu xh_new

Message

Softmax Aggregate
Update

a
b

cde

Matmul

Matmul

Concat Matmul

Leaky_relu

Relu h_agg

h

h_new

(a) Original MP-DFG.

h

W

Matmul

z

W_atten_1W_atten

W_atten_2

Matmul

Matmul

Split

u_add_v
a_src

a_dst
a

Leaky_relu

e

Seg_Softmaxalphau_mul_e_sum_reluh_new

d

a

b

c

h

W_atten

(b) Optimized MP-DFG.

Figure 2. Transformation of MP-DFG for GAT.

Specifically, edges.src[′h′] and edges.dst[′h′] in Listing 1
are translated into scatter operators in Figure 2 (indicated
by orange ovals) which scatter data from nodes to outgoing
and incoming edges respectively. Standard operators with
dense tensors as inputs or outputs are represented by green
ovals in the figure. Other than weight matrices, most tensors
in an MP-DFG can be classified as either data on nodes
or on edges, and these are represented by yellow and blue
rectangles in the figure, respectively. Tensors and operators
in the aggregation UDF are colored in gray, indicating that
the data representation or operator semantics may change
depending on the underlying implementation, e.g. using
bucketing with dense operators in DGL, as discussed in
§2.2.2.

4.2 MP-DFG Level Optimization Passes

While DFG-level optimizations have been widely used for
DNN performance optimization (Jia et al., 2019; Ma et al.,
2020), the use of MP-DFGs for GNN compilation and
scheduling has been largely unexplored. By building MP-
DFGs with rich message passing semantics in Graphiler,
we open up a broad optimization space for message pass-
ing related patterns. In the following we list some of the
optimizations enabled by our MP-DFG representation.

4.2.1 Operator Reordering

As indicated by the area marked a in Figure 2, the original
MP-DFG scatters features h from nodes onto edges and then

multiplies these by the weight matrix W with size (fv × k).
This “scatter-compute” approach causes redundant compu-
tations, and has O(|E|fvk) computational complexity using
the matrix multiplication operator Matmul. By reordering
the computation to “compute-scatter”, the computational
complexity decreases substantially to O(|V|fvk). In addi-
tion to Matmul, this optimization can be applied to other
linear operations as well.

4.2.2 Concatenation and Split

The “concatenate-multiply” operations in equation 2 can be
transformed to “split-multiply-sum” as follows:

−→a (l)T (z
(l)
i ||z

(l)
j) =⇒ −→a1(l)

T

z
(l)
i +−→a2(l)

T

z
(l)
j .

Combined with the optimization in §4.2.1, the “scatter-
concatenate-multiply” operations can be transformed into
“split-multiply-scatter-sum”. This allows moving the mul-
tiplication of −→a (l)T and (z

(l)
i ||z

(l)
j) on edges to multiplica-

tions−→a1(l)
T

z
(l)
i and−→a2(l)

T

z
(l)
j on nodes. In the case of GAT,

this reduces the computational complexity from O(|E|fv)
to O(|V|fv + |E|) In addition, this transformation enables
possible further optimization as discussed in §4.2.4.

4.2.3 Aggregation UDF Lowering

As we discussed in §2.2.2, existing GNN frameworks can-
not effectively support aggregation UDFs due to issues such
as inflexible interfaces or poor performance from bucket-
ing. To overcome these problems, Graphiler lowers (Rotem

Graphiler

et al., 2018) aggregation UDFs programmed using dense
tensor operations to MP-DFGs, and then automatically in-
fers and replaces the operations in aggregation UDFs by
extended primitives. For example, in the case of GAT, as
indicated by c in Figure 2, Graphiler replaces the Softmax
operator marked in grey by the segmented softmax oper-
ator Seg Softmax in orange. The Mul operator in grey
is inferred to be a tensor operator, and the Sum operator
is replaced by a Seg Sum operator. These operators will
further be fused in §4.2.4. Graph operations in aggrega-
tion UDFs which are supported by our extended primitives
are thus executed using high performance kernels, while
operations which are as-yet unsupported use the fallback
bucketing approach. Part of our current work on Graphiler
involves broadening the range of supported primitives.

4.2.4 Kernel Fusion

In DNNs, the tensor produced by one operator is often im-
mediately consumed by the following operator. In these
cases, the two operators can be fused to greatly reduce
memory bandwidth use and kernel launch overhead. In the
case of GNNs, the benefits from operator fusion can be
even greater. This is because of the prevalence of “scatter-
aggregate” computation patterns in GNNs, where the input
and output tensors are node data with total size O(|V|),
while the intermediate tensors which would be produced
without operator fusion have size O(|E|). This suggests
that operator fusion in GNNs can significantly reduce mem-
ory footprint and execution time, especially in high degree
graphs.

Labels b, d and e in Figure 2 indicate three common patterns
where kernel fusion can be applied.
b “scatter-add” is fused to a u add v primitive, which is

implemented using high performance SDDMM. Like-
wise the same pattern applies to d.

d “u mul e-sum” is fused to a u mul e sum primitive,
which is implemented using high performance SPMM.

e For the “compute-elementwise” pattern, the injective
element-wise activation function (ReLU) can be fused
with the prior operation to a u mul e sum relu prim-
itive (Chen et al., 2018b).

4.3 Extended Primitive Set

The primitives provided by existing GNN frameworks are
largely simple variants of SPMM and SDDMM operations
using a single binary operator (add, multiplication, etc)
and an aggregation operator (sum, mean, max, etc), and
which are hard-coded using C++ templates. By extending
the programming interface proposed in graph computing
frameworks (Wang et al., 2016) with feature dimension
parallelism from neural network computations (Hu et al.,
2020b), we create a versatile template for extending the
primitives set. While the template covers all the primitives

Table 1. Graph datasets.
Dataset Vertex Edge Feature
Cora 2708 10,556 1433
Pubmed 19,717 108,365 500
PPI 56,944 1,644,208 700
ogbn-proteins 132,534 79,122,504 8
ogbn-arxiv 169,343 1,166,243 128
Reddit 232,965 114,615,892 602

we have used so far, we leave generalizing it for additional
graph operations and performance optimization as future
work.

5 EVALUATION

5.1 Experimental Setup and Methodology

Benchmark model set and datasets. Our evaluation is
performed using a set of representative GNN models which
cover different architectures and a wide range of applica-
tion domains. Among them, GCN (Kipf & Welling, 2017)
is the most widely used graph convolutional network for
learning on graph-structured data; a two layer GCN with
hidden size 32 is used for evaluation. GAT (Velickovic et al.,
2018) introduces an attention mechanism to significantly
improve accuracy in many applications; a two layer GAT
with hidden size 32 is used for evaluation. ConstrainedGAT
(Wang et al., 2019a) is an improved version of GAT. Finally,
GCNN (Gasse et al., 2019) has been used for combinatorial
optimization. To make our evaluation more realistic, we
collected, largely via the DGL forum, implementations of
these models written by DGL users, and made only basic
modifications, such as adding type hints for UDF signatures.
We focus our evaluation on model inference. While there is
no fundamental reason Graphiler cannot be used for GNN
training, adding training support requires more engineer-
ing effort for operators, including DFG representations and
auto-differentiation, and thus we leave these as future work.

To validate the speedups we obtain on different graphs, we
evaluated all models on six popular datasets listed in Ta-
ble 1. Cora (Sen et al., 2008), Pubmed (Sen et al., 2008)
and ogbn-arxiv (Hu et al., 2020a) are citation network
datasets; PPI (Zitnik & Leskovec, 2017) and ogbn-proteins
(Hu et al., 2020a) contain a number of protein-protein in-
teraction graphs; Reddit (Hamilton et al., 2017) is a dataset
which connects posts in the online forum with comments
from the same users. These six datasets cover a wide range
of graph sizes and sparsity levels.

Machine environment. We conducted our experiments
on an AWS p3.2xlarge instance equipped with an NVIDIA
Tesla V100 (16GB version) and Intel(R) Xeon(R) E5-2686
v4@2.30GHz CPUs, using Ubuntu 1804 and CUDA 11.0.

Graphiler

1

2

4

8

16

32

64

128

256

512

1024

2048

Cora Pubmed PPI ogbn‐arxiv ogbn‐proteins Reddit Cora Pubmed PPI ogbn‐arxiv ogbn‐proteins Reddit Cora Pubmed ogbn‐arxiv Cora Pubmed

GCN GAT GCNN ConstrainedGAT

TI
M
E
(M

S)

DGL‐UDF Graphiler DGL‐primitives

Figure 3. Inference time of GNN models on different datasets.

5.2 Overall Performance

We first demonstrate the efficiency of Graphiler by com-
paring it with UDFs written in DGL, in which aggregation
UDFs are executed using bucketing as discussed in §2.2.
As shown in Figure 3, Graphiler significantly outperforms
DGL-UDF on all four models. For example, on the ogbn-
arxiv dataset it achieves speedups of 232×, 186× and 24×
compared to GCN, GAT and GCNN, respectively, while on
Pubmed it is 3× faster than ConstrainedGAT. We believe
Graphiler can further accelerate the latter two models as we
add more optimization patterns. Our speedup increases as
the graphs get larger because the inefficiency of DGL’s buck-
eting approach increases as the variation in node degrees
grows.

The missing blues bars in Figure 3 indicate out of memory
errors when executing DGL-UDF on large graphs, and arise
primarily because of edge data materialization. On GCN and
GAT, Graphiler significantly reduces memory usage through
kernel fusion and enables successful execution on large
datasets such as obgn-proteins and Reddit. Lastly, while
Graphiler also reduces memory consumption for GCNN and
ConstrainedGAT, the large amount of memory these models
use for edge features precluded their use on obgn-proteins
and Reddit.

Figure 3 shows orange “DGL-primitives” bars for GCN
and GAT because these two popular models have been care-
fully optimized and wrapped as built-in modules by DGL
developers. The comparison between these primitives and
Graphiler demonstrates that we can achieve competitive
performance on most datasets compared to hand optimized
implementations.

5.3 Breakdown Analysis

To better understand how different optimizations in
Graphiler contributed to its performance gain, we conducted

0

20

40

60

80

100

120

140

160

180

200

original +lowering +reorder +split +fusion

Sp
ee

d
u
p

Cora Pubmed PPI ogbn‐arxiv

Figure 4. Speedup Breakdown.

a breakdown analysis on GAT.

As shown in Figure 4, by simply lowering the aggregation
UDF, Graphiler can already achieve significant speedups,
e.g. by 70× on ogbn-arxiv. Other optimizations also con-
tribute noticeably to the execution speed, with their utility
varying by graph size and density. For optimizations reduc-
ing redundant computation, such as operator reordering and
splitting, the contribution on small datasets such as Cora
and Pubmed is limited. On larger graphs with higher den-
sity and thus greater redundancy, these techniques produce
significant speedups, e.g. by 5.5× on PPI. Finally, since
graph operations are usually memory bound, kernel fusion
accelerates GAT on all datasets, e.g. by up to 1.7× on PPI,
through reducing memory accesses.

6 FUTURE WORK

We are actively working on three parts to make Graphiler
more powerful: incorporating message passing semantics
from heterogeneous graphs to accelerate popular hetero-
GNN models, developing user friendly tools to register new
pattern substitution rules for optimization passes, and gen-
erating high performance kernel code for additional graph
operations used in GNNs.

Graphiler

REFERENCES

Paddle Graph Learning, 2019. https://github.com/
PaddlePaddle/PGL.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,
A., Raposo, D., Santoro, A., Faulkner, R., et al. Rela-
tional inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261, 2018.

Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., and
Blaschke, T. The rise of deep learning in drug discovery.
Drug discovery today, 23(6):1241–1250, 2018a.

Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E., Shen,
H., Cowan, M., Wang, L., Hu, Y., Ceze, L., et al. {TVM}:
An automated end-to-end optimizing compiler for deep
learning. In 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18), pp.
578–594, 2018b.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with PyTorch Geometric. In ICLR Workshop on Repre-
sentation Learning on Graphs and Manifolds, 2019.

Gasse, M., Chételat, D., Ferroni, N., Charlin, L., and Lodi,
A. Exact combinatorial optimization with graph convolu-
tional neural networks. In NeurIPS, 2019.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O.,
and Dahl, G. E. Neural message passing for quan-
tum chemistry. In Precup, D. and Teh, Y. W. (eds.),
Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pp. 1263–1272, International
Convention Centre, Sydney, Australia, 06–11 Aug
2017. PMLR. URL http://proceedings.mlr.
press/v70/gilmer17a.html.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive rep-
resentation learning on large graphs. In Proceedings of
the 31st International Conference on Neural Informa-
tion Processing Systems, NIPS’17, pp. 1025–1035, Red
Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. In Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M., and Lin,
H. (eds.), Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020a. URL https://proceedings.
neurips.cc/paper/2020/hash/
fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.
html.

Hu, Y., Ye, Z., Wang, M., Yu, J., Zheng, D., Li, M., Zhang,
Z., Zhang, Z., and Wang, Y. Featgraph: a flexible and
efficient backend for graph neural network systems. In
Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis,
pp. 1–13, 2020b.

Huang, K., Zhai, J., Zheng, Z., Yi, Y., and Shen, X. Un-
derstanding and bridging the gaps in current gnn perfor-
mance optimizations. In Proceedings of the 26th ACM
SIGPLAN Symposium on Principles and Practice of Par-
allel Programming, pp. 119–132, 2021.

Jia, Z., Padon, O., Thomas, J., Warszawski, T., Zaharia, M.,
and Aiken, A. Taso: optimizing deep learning computa-
tion with automatic generation of graph substitutions. In
Proceedings of the 27th ACM Symposium on Operating
Systems Principles, pp. 47–62, 2019.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In 5th International
Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, 2017. URL https://
openreview.net/forum?id=SJU4ayYgl.

Li, Z., Chen, Q., and Koltun, V. Combinatorial optimization
with graph convolutional networks and guided tree search.
In NeurIPS, 2018.

Ma, L., Xie, Z., Yang, Z., Xue, J., Miao, Y., Cui, W., Hu,
W., Yang, F., Zhang, L., and Zhou, L. Rammer: En-
abling holistic deep learning compiler optimizations with
rtasks. In 14th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 20), pp. 881–
897. USENIX Association, November 2020. ISBN 978-
1-939133-19-9. URL https://www.usenix.org/
conference/osdi20/presentation/ma.

Rotem, N., Fix, J., Abdulrasool, S., Catron, G., Deng,
S., Dzhabarov, R., Gibson, N., Hegeman, J., Lele, M.,
Levenstein, R., et al. Glow: Graph lowering com-
piler techniques for neural networks. arXiv preprint
arXiv:1805.00907, 2018.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Gal-
ligher, B., and Eliassi-Rad, T. Collective clas-
sification in network data. AI Magazine, 29
(3):93, Sep. 2008. doi: 10.1609/aimag.v29i3.
2157. URL https://ojs.aaai.org/index.
php/aimagazine/article/view/2157.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph attention networks. In 6th
International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net,

https://github.com/PaddlePaddle/PGL
https://github.com/PaddlePaddle/PGL
http://proceedings.mlr.press/v70/gilmer17a.html
http://proceedings.mlr.press/v70/gilmer17a.html
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://www.usenix.org/conference/osdi20/presentation/ma
https://www.usenix.org/conference/osdi20/presentation/ma
https://ojs.aaai.org/index.php/aimagazine/article/view/2157
https://ojs.aaai.org/index.php/aimagazine/article/view/2157

Graphiler

2018. URL https://openreview.net/forum?
id=rJXMpikCZ.

Wang, G., Ying, R., Huang, J., and Leskovec, J. Improv-
ing graph attention networks with large margin-based
constraints. arXiv preprint arXiv:1910.11945, 2019a.

Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X.,
Zhou, J., Ma, C., Yu, L., Gai, Y., Xiao, T., He, T., Karypis,
G., Li, J., and Zhang, Z. Deep graph library: A graph-
centric, highly-performant package for graph neural net-
works. arXiv preprint arXiv:1909.01315, 2019b.

Wang, Y., Davidson, A., Pan, Y., Wu, Y., Riffel, A., and
Owens, J. D. Gunrock: A high-performance graph pro-
cessing library on the gpu. In Proceedings of the 21st
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pp. 1–12, 2016.

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton,
W. L., and Leskovec, J. Graph convolutional neural net-
works for web-scale recommender systems. In Proceed-
ings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 974–983,
2018.

Zitnik, M. and Leskovec, J. Predicting multicellular function
through multi-layer tissue networks. Bioinformatics, 33
(14):i190–i198, 2017.

https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ

