
REDUCING COMMUNICATION IN GRAPH NEURAL NETWORK TRAINING

Alok Tripathy 1 Katherine Yelick 1 2 Aydın Buluç 1 2

ABSTRACT
Graph Neural Networks (GNNs) are powerful and flexible neural networks that use the naturally sparse connec-
tivity information of the data. GNNs represent this connectivity as sparse matrices, which have lower arithmetic
intensity and thus higher communication costs compared to dense matrices, making GNNs harder to scale to
high concurrencies than convolutional or fully-connected neural networks. We introduce a family of parallel al-
gorithms for training GNNs, based on 1D, 1.5D, 2D, and 3D distributed sparse-dense matrix multiplication, and
show that they can asymptotically reduce communication compared to previous parallel GNN training methods.
We train GNNs on over a hundred GPUs on multiple datasets, including a protein network with over a billion
edges.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Scarselli et al., 2008) are
types of neural networks that use the connectivity informa-
tion that is natural in datasets that can be represented as
graphs, such as molecules, transportation and social net-
works, the power grid, and proteins. High-quality surveys
of GNNs describe them, their variations, and their applica-
tions in more detail (Wu et al., 2020; Zhou et al., 2018).
While our techniques are generally applicable, we focus
on node classification, which predicts labels of individual
vertices.
Mini-batching (i.e. iteratively training on a small sets of
vertices) for GNNs has encountered a so-called neighbor-
hood explosion problem, as a mini-batch of vertices is de-
pendent on other vertices in the graph. Training a mini-
batch of vertices in a k-layer network requires all k-hop
neighbors of the batch of vertices, resulting in a huge mem-
ory footprint even for small k. To overcome neighborhood
explosion, researchers resort to sophisticated sampling-
based algorithms that can help GNN training have a smaller
memory footprint by reducing the number of k-hop neigh-
bors considered. Sampling algorithms, however, come with
approximation errors. Here, we use the aggregate memory
of a cluster or supercomputer to train GNNs without mini-
batching, similar to other work that use distributed memory
to train GNNs (Zhu et al., 2019; Jia et al., 2020). In par-

1Electrical Engineering and Computer Sciences, Univer-
sity of California, Berkeley 2Computational Research Division,
Lawrence Berkeley National Laboratory. Correspondence to:
Alok Tripathy <alokt@berkeley.edu>.

Proceedings of the First MLSys Workshop on Graph Neural Net-
works and Systems (GNNSys’21), San Jose, CA, USA, 2021.
Copyright 2021 by the author(s).

ticular, ROC (Jia et al., 2020) showed that (1) full gradient
descent can be competitive with mini-batching in terms of
performance, and (2) sampling based methods can lead to
lower accuracy. We build on this work by presenting dis-
tributed algorithms with reduced communication. Our dis-
tributed algorithms are general and while presented for full
gradient descent, they can be easily modified to operate on
a mini-batch setting.
The primary contribution of our paper1 is the presentation
of parallel GNN training algorithms that reduce communi-
cation, which are fundamentally different than existing ap-
proaches for GNN training. In particular, this paper focuses
on graph convolutional networks. Each algorithm provably
reduces communication volume by factors such asO(

√
P ),

where P is the number of processes. Our work presents al-
gorithmic recipes to get the fastest GNN implementations
at large scale. In this shortened version of our paper, we
primarily focus on two algorithms (1D and 1.5D)
Our code is available publicly as the CAGNET
(Communication-Avoiding Graph Neural nETwork)
package at https://github.com/PASSIONLab/CAGNET.

2 RELATED WORK

Our approach treats GNN training strictly as a series of ma-
trix multiplication operations. In this way, we can achieve
highly-parallel algorithms without even considering the se-
mantic meaning of the dimensions that are partitioned by
the algorithm, similar to an approach taken in earlier work

1This is a condensed and slightly updated version of the pa-
per that appeared in SC’20, full version is available as: “Tripathy,
Alok, Katherine Yelick, and Aydin Buluc. Reducing Communica-
tion in Graph Neural Network Training. In International Confer-
ence for High Performance Computing, Networking, Storage and
Analysis (SC), pp. 987-1000”

https://github.com/PASSIONLab/gnn_training
https://dl.acm.org/doi/proceedings/10.5555/3433701


Reducing Communication in Graph Neural Network Training

in parallelizing the training of fully-connected and convo-
lutional neural networks (Gholami et al., 2018).
Existing work in parallel GNN training implement their al-
gorithms in specialized frameworks (Jia et al., 2020; Ma
et al., 2019; Zhu et al., 2019). This requires practitioners
to port their models and code to that framework. We im-
plement our algorithms using Pytorch (Paszke et al., 2019),
utilizing torch.distributed and PyTorch Geometric libraries.
Given the wide availability and popularity of PyTorch, not
to mention the vast set of GNN variants implemented in Py-
Torch Geometric (Fey & Lenssen, 2019), any practitioner
with access to a distributed cluster can easily utilize our
algorithms to scale their models.
The other PyTorch based distributed graph embed-
ding libraries we are aware of are PyTorch-BigGraph
(PBG) (Lerer et al., 2019) and Deep Graph Library
(DGL) (Wang et al., 2019). Our algorithmic work is com-
plementary and can incorporated into DGL in the future.

3 BACKGROUND

3.1 Notation
Table 1 summarizes the notation used in our paper. There
is a unique sparse matrix A that represents the graph struc-
ture but there are L distinct H and G matrices, indexed
l = 0 . . . L − 1, which are embedding matrices and their
derivatives, respectively. Finally there are L − 1 weight
matrices W and Y, indexed l = 0 . . . L − 2, because the
number of transitions between feature vectors are one less
than the number of embedding matrices.
When analyzing communication costs we use the α − β
model where each message takes a constant α time units
latency regardless of its size plus an inverse bandwidth term
that takes β time units per word in the message, to reach
its destination. Thus, sending a message of k words takes
α + βk time. In addition, we use nnz (A) when referring
to the number of nonzeros in the sparse adjacency matrix
A, which is equal to the number of edges in the graph with
self loops added. We also use d for the average degree of a
vertex in A, i.e. nnz (A) = dn.

3.2 Graph Neural Networks
Consider a dataset that is represented as a graph G(V,E).
Here, V is the set of vertices (nodes) and E is the set of
edges. We can consider the classification of the nodes or
the edges. Without loss of generality, we will describe a
GNN for node classification.
Let A be the n × n sparse adjacency matrix of the graph
with added self-connections. In this work, we focus on the
Graph Convolution Network (GCN) update rule (Kipf &
Welling, 2017), but our techniques can be applied to other
types of layers as well. The rows and columns of A are
normalized in GCNs, so for an undirected graph one actu-

Table 1. List of symbols and notations used by our algorithm
Symbols and Notations

Symbol Description
A Modified adjacency matrix of graph (n×n)
Hl Embedding matrix in layer l (n× f )
Wl Weight matrix in layer l (f × f )
Yl Matrix form of ∂L

∂W l
ij

(f × f )

Zl Input matrix to activation function (n× f )
Gl Matrix form of ∂L

∂Zl
ij

(n× f )

σ Activation function
f Length of feature vector per vertex
fu Feature vector for vertex u
L Total layers in GNN
P Total number of processes
α Latency
β Reciprocal bandwidth

ally uses D−1/2(A + I)D−1/2 due to its favorable spec-
tral properties. Here, I is the identity matrix and D is a
diagonal matrix of modified vertex degrees. To avoid nota-
tional burden, we will still refer to this modified adjacency
matrix with A. H0 is a dense n × f matrix of input
node features. These features are application dependent at-
tributes on graph nodes. A high-quality embedding can be
achieved by using a neural network that uses the topology
of the graph. In particular, the GNN forward propagation
processes the input features matrix H(l) at level l using fol-
lowing simple equation: H(l) = σ(ATH(l−1)Wl).

Here, W(l) is the trainable matrix that holds the model
parameters at the lth level of the neural network, and σ is
the activation function such as ReLU. Consequently, the
most time consuming operations are the multiplication of
a sparse matrix with a dense matrix (SpMM) and dense
matrix multiply. Backpropagation also relies on the same
computational primitives.

3.3 Forward Propagation
At each node, the product ATH(l−1) combines the (i−1)th
feature vectors of its neighbors while the subsequent mul-
tiplication with Wl mixes the features and maps them into
the new feature space at the ith level. Finally, nonlinearity
is achieved via the σ() function on the output.

Zl = ATH(l−1)Wl

Hl = σ(Zl)

3.4 Backpropagation
We provide the backpropagation equations for the above
forward propagation equations, with derivations presented
in our full paper (Tripathy et al., 2020). The objective of
these equations is to compute gradients of the inputs for



Reducing Communication in Graph Neural Network Training

each layer l (Gl) and for the weights in each layer (Yl).

GL =
∂L
∂ZL

ij

= ∇HLL � σ′(ZL)

Gl−1 = AGl(Wl)T � σ′(Zl−1)

Yl−1 =

(
∂L
∂W l

)
ij

= (Hl−1)TAGl

4 PARALLEL ALGORITHMS

In this section, we present 1D, 1.5D parallel algorithms for
GNN training and analyze their communication costs. For
space, we only present the final communication complexity
for our 2D and 3D algorithms. The complete algorithms
and communication analyses are in our full paper (Tripathy
et al., 2020). The presented communication costs are for
one epoch, which is a single pass over the whole dataset.

4.1 A One-Dimensional (1D) Algorithm
In this regime, matrices AT and H are distributed to pro-
cesses in block rows, where each process receives n/P
consecutive rows. For example, given a matrix AT, we
write AT

i = AT(i(n/P ) : (i+1)(n/P )−1, :) to denote the
block row owned by the ith process, assuming n/P is an
integer. To simplify the algorithm description, we use AT

ij

to denote AT
i (:, j(n/P ) : (j+1)(n/P )− 1), the jth block

column of AT
i , although the whole block row is owned by

a single process.

AT =

 AT
1

...
AT

p

 =

 AT
11 . . . AT

1p
...

. . .
...

AT
p1 . . . AT

pp

 ,H =

 H1

...
Hp


(1)

Let T be the intermediate product ATHl−1. For each pro-
cess P (i), the computation is:

Ti = Ti +AT
i H = Ti +

p∑
j=1

AT
ij Hj

The row-wise algorithm forms one row of output at a time,
and each process may potentially need to access all of H
to form a single row of T. However, only a portion of H
is locally available at any time in parallel algorithms. The
algorithm, thus, performs multiple iterations to fully form
one row of T. Algorithm 1 shows the pseudocode of the
algorithm.

4.1.1 Equation Zl = ATHl−1Wl

Communication is 1D Block Row AT is partitioned by
rows, and Hl−1 is partitioned by rows. This yields a 1D
Block Row multiplication. Wl is fully-replicated on each
process, and is multiplied with ATHl−1 after communica-

Algorithm 1 Parallel algorithm for GNN forward propaga-
tion, which computes Hl ← σ(ATHl−1Wl), using the 1D
block row decomposition.

1: function BLOCKROWFW(AT,Hl−1,W,Hl)
2: for all processes P (i) in parallel do
3: for j = 1 to p do
4: BROADCAST(Hl−1

j )
5: Ti ← Ti +AT

ijH
l−1
j

6: Zi ← TiW
7: Hl

i ← Hl
i + σ(Zi)

tion. The first multiplication is essentially a sparse matrix
times (tall-skinny) dense matrix, also known as sparse ma-
trix times multiple dense vectors (SpMM).
The per-process communication cost is thus

Tcomm = α(P − 1) +
P − 1

P
β nf ≈ αP + β nf

4.1.2 Equation Hl = σ(Zl)

No Communication Hl, the result of activation, is par-
titioned by rows as is Hl−1. No further communication is
necessary here to use Hl in Eq. 1 for layer l.

4.1.3 Equation Gl−1 = AGl(Wl)T � σ′(Zl−1)

Communication is 1D Block Row Because we also par-
tition A in block rows, the communication pattern and the
cost is identical to the forward propagation. The interme-
diate product AGl is naturally block row partitioned. The
last step of multiplying the block row distributed AGl with
replicated Wl to yield a block row distributed Gl−1 does
not require any communication.

4.1.4 Equation Yl−1 = (Hl−1)TAGl

Communication is (small) 1D Outer Product Alge-
braically, there are two matrix multiplications in this step of
the backpropagation. However, we can reuse the intermedi-
ate product AGl that we computed in the previous equation
at the expense of increasing the memory footprint slightly.
Then the only task is to multiply (Hl−1)T and AGl, which
is a small 1D outer product that requires an all-reduce on
low-rank matrices of size f × f . This multiplication has
communication cost Tcomm = α lgP + β f2.

4.1.5 Total Communication of our 1D Algorithm

Given that the embedding (i.e., feature vector) lengths are
different for each layer of the GNN, we use the superscript
to denote the length of the feature vector f l in layer l. This
results in the following communication bound.

Tcomm =

L∑
l=1

(
α(lgP + 2P ) + β

(
nf l−1 + nf l + f l−1f l)

))
To reduce clutter, we can consider the “average” feature



Reducing Communication in Graph Neural Network Training

vector length f , resulting in the simplified formula.
Tcomm = L

(
α(lgP + 2P ) + β(2nf + f2)

)
4.2 1.5D Block Row Algorithm
For 1.5D algorithms (Koanantakool et al., 2016), processes
are organized in a rectangular P = P/c × c grid. Matri-
ces are, however, partitioned into block rows and columns
as done in 1D. The difference between 1D and 1.5D al-
gorithms is that these partitions are now replicated across
process rows. For instance, processes across the ith process
row P (i, :) collectively store the ith block row of AT. Be-
cause of this difference, while matrices are partitioned into
block rows and columns, there are only P/c such blocks.

AT =

 AT
1

...
AT

p/c

H =

 H1

...
Hp/c

 (2)

Similar to 1D, each submatrix AT
i is further partitioned in

p/c block columns.
Let T be the intermediate product of ATHl−1. Each pro-
cess row P (i, :) computes the following:

Ti = Ti +AT
i H = Ti +

p/c∑
j=1

AT
ij Hj

However, each process computes a subset of the terms in
the above summation. These partial sums are then added
within process rows with a reduction on P (i, :). If q =
p/c2, then the computation done by process P (i, j) is

Ti = Ti +AT
i H = Ti +

(j+1)q∑
k=jq

AT
ik Hk (3)

These steps are outlined in detail in Algorithm 2. While
our pseudocode only outlines the special case where c2 per-
fectly divides p, our implementation is more general, and
assigns more stages to the last process column if necessary.

Algorithm 2 Block 1.5D algorithm for GNN forward prop-
agation, which computes Hl ← σ(ATHl−1Wl) in paral-
lel. A and H are distributed on a p/c× c process grid, W
is replicated.

1: function Block1.5DFW(AT,Hl−1,W,Hl)
2: for all processes P (i, j) in parallel do
3: s = p/c2 . number of stages
4: for k = 0 to s− 1 do
5: q = j s+ k
6: Ĥl−1 ← BCAST(Hl−1

qj , P (:, j))
7: Zl ← Zl + SPMM(AT

iq, Ĥ
l−1)

8: Ẑl ← ALLREDUCE(Zl, +, P (i, :))
9: Ĥl ← GEMM(Zl, Wl−1)

4.2.1 Equation Zl = ATHl−1Wl

Communication: 1.5D Block Row. Both AT and H are
partitioned by rows in a P/c × c process grid. We group
process rows into c “chunks”, with p/c2 process rows per
chunk. These chunks represent the block rows of H that
a particular process column accesses, as per Equation 3.
To compute a submatrix of ATH, we broadcast each block
row to a process column based on its chunk. If a block
row is in chunk i, we broadcast it to ith process column
P (:, i). Since there are p/c2 chunks with c blocks row each,
each process participates in only p/c2 broadcasts. After
these iterations of broadcasts complete, each process within
a process row has a partial sum for its submatrix. We run
an all-reduction to compute the final block row. Note that
Wl is fully-replicated, so we do not need to communicate
data to multiply with Wl. The overall communication cost
for this equation is

Tcomm = α
(P
c2

lg
P

c2

)
+ β

(nf
c

+
nfc

P

)
4.2.2 Equation Hl = σ(Zl)

No Communication Hl, the result of activation, is par-
titioned by rows as is Hl−1. No further communication is
necessary here to use Hl in Eq. 1 for layer l.

4.2.3 Equation Gl−1 = AGl(Wl)T � σ′(Zl−1)

Communication: 1.5D Block Row Recall that A is par-
titioned by rows and stored separately from AT if graph is
directed. G is also partitioned by rows. Hence, we can ap-
ply the same 1.5D algorithm used in Equation 1. We also
need to account for σ′(Zl−1). Recall that, as in Equation 2,
this step requires no communication as Zl−1 is partitioned
by rows. The communication cost for this equation is

Tcomm = α
(P
c2

lg
P

c2

)
+ β

(nf
c

+
nfc

P

)

4.2.4 Equation Y = (Hl−1)TAGl

Communication: (small) 1.5D Outer Product We
reuse the intermediate product AGl that was computed
in the previous step. Multiplying (Hl−1)T with AGl is
a dense 1.5D Outer Product on two matrices with nf el-
ements, resulting in a small f × f output. The resulting
communication cost is:

Tcomm = α
(
lg
P

c

)
+ β(f2)

4.2.5 Total Communication

Ignoring lgP latency terms and f2 bandwidth terms, we
have a total communication cost of

Tcomm =

L∑
l=1

(
α
(
2
P

c2
log

P

c2

)
+ β

(2nf
c

+
2nfc

P

))



Reducing Communication in Graph Neural Network Training

Because of replication, we do incur an extra c times mem-
ory cost for our 1.5D algorithm compared to our 1D algo-
rithm. However, while our 1D algorithm had no scaling
factors, our 1.5D algorithm scales with the harmonic mean
of P/c and c.

4.3 Block Two-Dimensional (2D) Algorithms
Thorough communication analysis for the 2D algorithm
can be found in our full paper (Tripathy et al., 2020). Total
communication volume is:

≈ L
(
α(5
√
P + 3 lgP ) + β

(8nf√
P

+
2nnz (A)√

P
+ f2

))
Overall, the communication volume scales with

√
p, much

more than our 1D and 1.5D algorithms. However, the con-
stants in the 2D algorithm are significantly larger than the
constants in 1D and 1.5D algorithms.

4.4 Block 3D algorithms
Thorough communication analysis for the 3D algorithm
can be found in our full paper (Tripathy et al., 2020). Total
communication volume, ignoring lgP latency terms that
are strictly dominated by the P 1/3 terms, is:

≈ L
(
α(4P 1/3) + β

(2nnz (A)

P 2/3
+

12nf

P 2/3

))
Although the 3D algorithm provides an asymptotic reduc-
tion in communication costs, it has several disadvantages
compared to the 2D algorithm, which are (1) its high con-
stants, (2) its implementation complexity, and (3) its need
to do a factor of 3

√
p replication in its intermediate stages.

5 EXPERIMENTAL SETUP

5.1 Datasets and Compute Platform
We ran our experiments on two of the largest datasets
used in GNN research previously, the Reddit and Amazon
datasets. In addition, we use a much larger protein similar-
ity network. Details of our datasets are in Table 2.

Table 2. Datasets used in our experiments
Name Vertices Edges Features Labels
Reddit 232,965 114,848,857 602 41
Amazon 14,249,639 230,788,269 300 24
Protein 8,745,542 2,116,240,124 128 256

We use the same 3-layer GNN architecture presented by
Kipf and Welling (Kipf & Welling, 2017) though deeper
and wider networks are certainly possible. We verified that
our parallel implementation achieves the same embeddings
up to floating point accumulation errors as serial implemen-
tations. Consequently, we only provide performance num-
bers.

5.2 System details
All of our experiments are run on the Summit supercom-
puter at ORNL, which has IBM AC922 nodes with 6
NVIDIA V100 GPUs. Each GPU has 16GB of HBM2
memory. Each Summit node has two sockets, each with
1 POWER9 CPU and 3 GPUs each. Within a socket,
each GPU is connected to each other and the host CPU
with NVLINK 2.0 with 50GB/s unidirectional bandwidth.
Across sockets, Summit uses the IBM X-bus intercon-
nect with 64GB/s. Each socket has a 16GB/s link to
the Network Interface Card (NIC). Across nodes, Summit
uses dual-rail EDR Infiniband with 25GB/s node injection
bandwidth (Papatheodore, 2019), but each socket has ac-
cess to half (12.5GB/s) of this node injection bandwidth.

5.3 Implementation details
We implement our 3-layer GNN architecture mostly in Py-
Torch Geometric (PyG) 1.3 (Fey & Lenssen, 2019). Within
PyG, we use torch.distributed with a NCCL backend for
our communication primitives.
For our SpMM calls, we separately call cuSPARSE’s
csrmm2 function in a C++ extension. We compile our C++
backend with CUDA 10.1.
For Reddit, we use the input feature vectors and training
split used by Hamilton et al. (Hamilton et al., 2017) as they
are already provided within PyG. For the Amazon and Pro-
tein datasets, we randomly generate feature values for sim-
plicity and use the whole graph as the training set. This
does not affect performance, and in practice, users could
use any values for the feature vectors. We run Reddit and
Amazon for 100 epochs and Protein for 10 epochs.

6 RESULTS

6.1 Performance of the 1D and 1.5D Implementations
The performance of 1D (c=1) as well as 1.5D implemen-
tations (c>1) are shown in Figure 1. Since our 1D and
1.5D implementations only move the dense matrices, the
communication volume is proportional to the product of
the number of vertices and the number of features. Due to
its small vertex count, GNN training on Reddit dataset is
increasingly latency bound at large concurrencies. Con-
sequently when P is large, increasing c directly trans-
lates into lower communication costs for Reddit, due to
quadratic decrease in latency costs. On a single node,
our 1.5D GNN training algorithm achieves more than 20
epochs/sec throughput, higher than all previously published
results.
For Amazon and Protein, which are mostly bandwidth
bound, our analysis expects communication volume in
the broadcast stage to decrease linearly with increasing c.
However, our results showed minimal decrease in broad-
cast time when fully utilizing all 6 GPUs on each Summit



Reducing Communication in Graph Neural Network Training

4 16 36 64
reddit

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Tim

es
 (s

ec
.) 

/ e
po

ch

c=
1

c=
1 c=

1 c=
1c=

2

c=
2

c=
2

c=
2

c=
4 c=

4

c=
4

c=
4

2D

2D

2D

2D

16 36 64 100
amazon

0.0

0.5

1.0

1.5

2.0

2.5

3.0

c=
1

c=
1

c=
1

c=
1c=

2

c=
2

c=
2

c=
2

c=
4

c=
4

c=
4

c=
4

2D

2D 2D

2D

36 64 100
protein

0.0

0.5

1.0

1.5

2.0

2.5

c=
1

c=
1

c=
1

c=
2

c=
2

c=
2

c=
4

c=
4

c=
4

2D 2D 2D

reduce
dbcast
local
sbcast

Figure 1. 1D (c=1), 1.5D (c=2, 4), and 2D performance results when using all 6 GPUs on each node. The x-axis in each subplot is the
number of GPUs used. dbcast refers to the broadcast of dense embedding matrices, sbcast refers to the broadcast of sparse adjacency
matrix (only for 2D), reduce is the allreduce (only for 1.5D), local is the local computation including cuSPARSE SpMM calls, small
DGEMM calls, transpose (only for 2D), and sparse matrix assembly after communication (only for 2D). Missing bars for c=4, p=16 on
Amazon and c=4, p=36 on Protein means that those runs ran out of memory. Amazon and Protein also ran out of memory on 4 and 16
GPUs, respectively.

16 36 64 100
amazon

0.0

0.5

1.0

1.5

2.0

Ti
m

es
 (s

ec
.) 

/ e
po

ch

c=
1 c=

1

c=
1

c=
1

c=
2 c=

2

c=
2

c=
2

c=
4

c=
4

c=
4

c=
4

36 64 100
protein

0.00

0.25

0.50

0.75

1.00

1.25

1.50

c=
1

c=
1

c=
1

c=
2

c=
2 c=

2

c=
4

c=
4

c=
4

reduce dbcast local

Figure 2. 1D (c=1), 1.5D (c=2, 4) performance results when only
one 1 GPU is used per node. The x-axis is the number of GPUs
used. dbcast is the broadcast of dense embedding matrices, re-
duce is the allreduce (only for 1.5D), local is the local computa-
tion including SpMM and DGEMM calls
node. Diving into the specifics of Summit architecture (Pa-
patheodore, 2019), we conclude this is due to sharing net-
work injection bandwidth. Recall that each socket on Sum-
mit has 3 GPUs and they share the same 12.5GB/s network
injection bandwidth. Also recall that broadcasts in NCCL
are implemented using a pipelined ring algorithm. When
only a single broadcast is active (c=1 aka 1D), the whole
12.5GB/s injection bandwidth is used by a single GPU be-
cause the last GPU on the ith node is peered with the first
GPU on the (i + 1)th node. When c = 2, there are two
simultaneous broadcasts happening on two virtual rings.
Two GPUs on a socket now has to share the network in-
jection bandwidth to communicate with their peers on the
neighboring node. This cuts down the effective available
bandwidth by half, leading to no appreciable decrease in
broadcast times with increasing c from 1 to 2.
Further increasing c to 4 increases the load node injection
to its maximum where all 3 GPUs on the socket compete
for 12.5GB/s injection bandwidth. We confirmed that node
injection bandwidth is indeed the bottleneck by running
our 1D and 1.5D implementations on 1 GPU/node config-

uration. Figure 2 shows close-to-linear scaling for broad-
cast times when c is increased, for the bandwidth-bound
datasets Amazon and Protein.

6.2 Performance of the 2D and 3D Implementations
The performance of 2D and 3D algorithms can be found in
our full paper (Tripathy et al., 2020).

7 CONCLUSIONS AND FUTURE WORK

We presented distributed GNN training algorithms that
asymptotically reduce communication costs by dividing
two or three dimensions of the iteration space across the
training pipeline. Overall, we show that the 1.5D algorithm
is the most effective on the Summit machine. Complete re-
sults can be found in our full paper (Tripathy et al., 2020).

ACKNOWLEDGMENTS

This material is based upon work supported by the Na-
tional Science Foundation Graduate Research Fellowship
under Grant No. DGE 1752814 and by the National
Science Foundation under Award No. 1823034. This
work is also supported in part by the Advanced Scien-
tific Computing Research (ASCR) Program of the Depart-
ment of Energy Office of Science under contract No. DE-
AC02-05CH11231, and in part by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National
Nuclear Security Administration.
This research used resources of the Oak Ridge Leader-
ship Computing Facility at the Oak Ridge National Lab-
oratory, which is supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC05-
00OR22725.



Reducing Communication in Graph Neural Network Training

REFERENCES
Fey, M. and Lenssen, J. E. Fast graph representation learn-

ing with PyTorch Geometric. In ICLR Workshop on Rep-
resentation Learning on Graphs and Manifolds, 2019.

Gholami, A., Azad, A., Jin, P., Keutzer, K., and Buluç, A.
Integrated model, batch, and domain parallelism in train-
ing neural networks. In SPAA’18: 30th ACM Symposium
on Parallelism in Algorithms and Architectures, 2018.

Hamilton, W., Ying, Z., and Leskovec, J. Induc-
tive representation learning on large graphs. In
Guyon, I., Luxburg, U. V., Bengio, S., Wallach,
H., Fergus, R., Vishwanathan, S., and Garnett,
R. (eds.), Advances in Neural Information Pro-
cessing Systems 30, pp. 1024–1034. Curran Asso-
ciates, Inc., 2017. URL http://papers.nips.cc/paper/
6703-inductive-representation-learning-on-large-graphs.
pdf .

Jia, Z., Lin, S., Gao, M., Zaharia, M., and Aiken, A. Im-
proving the accuracy, scalability, and performance of
graph neural networks with ROC. In Proceedings of
Machine Learning and Systems (MLSys), pp. 187–198.
2020.

Kipf, T. N. and Welling, M. Semi-Supervised Classifica-
tion with Graph Convolutional Networks. In Proceed-
ings of the 5th International Conference on Learning
Representations (ICLR), 2017.

Koanantakool, P., Azad, A., Buluç, A., Morozov, D.,
Oh, S.-Y., Oliker, L., and Yelick, K. Communication-
avoiding parallel sparse-dense matrix-matrix multiplica-
tion. In Proceedings of the IPDPS, 2016.

Lerer, A., Wu, L., Shen, J., Lacroix, T., Wehrstedt, L.,
Bose, A., and Peysakhovich, A. PyTorch-BigGraph: A
large-scale graph embedding system. In Proceedings of
the 2nd SysML Conference, 2019.

Ma, L., Yang, Z., Miao, Y., Xue, J., Wu, M., Zhou, L.,
and Dai, Y. NeuGraph: Parallel deep neural network
computation on large graphs. In USENIX Annual Techni-
cal Conference (USENIX ATC 19), pp. 443–458, Renton,
WA, 2019. USENIX Association. ISBN 978-1-939133-
03-8.

Papatheodore, T. Summit architecture overview.
Introduction to Summit, 2019. URL https:
//www.olcf.ornl.gov/wp-content/uploads/2019/05/
Summit System Overview 20190520.pdf .

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,

Antiga, L., et al. PyTorch: An imperative style, high-
performance deep learning library. In Advances in Neu-
ral Information Processing Systems, pp. 8024–8035,
2019.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2008.

Tripathy, A., Yelick, K., and Buluç, A. Reducing communi-
cation in graph neural network training. In International
Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC), 2020.

Wang, M., Yu, L., Zheng, D., Gan, Q., Gai, Y., Ye,
Z., Li, M., Zhou, J., Huang, Q., Ma, C., Huang, Z.,
Guo, Q., Zhang, H., Lin, H., Zhao, J., Li, J., Smola,
A. J., and Zhang, Z. Deep graph library: Towards ef-
ficient and scalable deep learning on graphs. CoRR,
abs/1909.01315, 2019. URL http://arxiv.org/abs/1909.
01315.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip,
S. Y. A comprehensive survey on graph neural networks.
IEEE Transactions on Neural Networks and Learning
Systems, 2020.

Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang,
L., Li, C., and Sun, M. Graph neural networks: A
review of methods and applications. arXiv preprint
arXiv:1812.08434, 2018.

Zhu, R., Zhao, K., Yang, H., Lin, W., Zhou, C., Ai, B.,
Li, Y., and Zhou, J. AliGraph: a comprehensive graph
neural network platform. Proceedings of the VLDB En-
dowment, 12(12):2094–2105, 2019.

http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2019/05/Summit_System_Overview_20190520.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2019/05/Summit_System_Overview_20190520.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2019/05/Summit_System_Overview_20190520.pdf
http://arxiv.org/abs/1909.01315
http://arxiv.org/abs/1909.01315

	Introduction
	Related Work
	Background
	Notation
	Graph Neural Networks
	Forward Propagation
	Backpropagation

	Parallel Algorithms
	A One-Dimensional (1D) Algorithm
	Equation Zl = ATHl - 1Wl
	Equation Hl = (Zl)
	Equation Gl - 1 = AGl(Wl)T'(Zl - 1)
	Equation Yl-1= (Hl - 1)TAGl
	Total Communication of our 1D Algorithm

	1.5D Block Row Algorithm
	Equation Zl = ATHl - 1Wl
	Equation Hl = (Zl)
	Equation Gl-1 = AGl(Wl)T'(Zl-1)
	Equation Y= (Hl - 1)TAGl
	Total Communication

	Block Two-Dimensional (2D) Algorithms
	Block 3D algorithms

	Experimental Setup
	Datasets and Compute Platform
	System details
	Implementation details

	Results
	Performance of the 1D and 1.5D Implementations
	Performance of the 2D and 3D Implementations

	Conclusions and Future Work

