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ABSTRACT
The recent emergence of demand for running Graph Neural Networks (GNNs) on giant real world graphs requires
more scalable system designs. Due to the sparse and irregular connections a graph has, parallel GNN training
encounters the problem of load imbalance among workers. In this paper, we show that previous techniques based
on graph partitioning is insufficient to address the load imbalance caused by GNN sampling algorithms. We thus
propose a two-stage strategy to balance the workload adaptively during training. Our evaluation shows that the
strategy effectively produces more balanced workloads which accelerates the training by 25%.

1 INTRODUCTION

Learning from relational data such as graphs plays a cen-
tral role in many real world scenarios. The recent trend of
geometric deep learning (Bronstein et al., 2017) gives rise
to Graph Neural Networks (GNNs). GNNs combine the
strength of deep neural networks and the message passing
algorithms on graphs. This grants GNN the capability to
learn from both features and graph topology, which are key
to its success in fields like community detection (Kipf &
Welling, 2017; Veličković et al., 2018), recommender sys-
tem (Ying et al., 2018; Berg et al., 2017; Wang et al., 2019b),
molecule property prediction (Shui & Karypis, 2020; Xiong
et al., 2019), and so on.

As real world graphs can be gigantic, i.e., consisting of
billions of nodes or edges, it is critical to support training
GNNs at scale. Much resembling the stochastic gradient de-
scent algorithm for CNNs or RNNs, the stochastic training
algorithm of GNNs first extracts a surrounding subgraph
(e.g., an ego-network) for the target nodes to compute rep-
resentations for, then trains the GNN model on the sub-
graph, and repeats the steps until convergence. Previous
studies (Hamilton et al., 2018; Chen et al., 2018; 2017) have
shown that the GNNs trained with sampling yield competi-
tive results.

To parallelize the training procedure, current GNN sys-
tems (Zheng et al., 2020; Alibaba, 2019; Yang, 2019) adopt
a synchronous data parallelism approach; each worker per-
forms sampling and training in parallel and synchronizes
model parameters before the next iteration. However, due
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to the sparse and irregular connections a graph has, the
sample sizes among workers can vary drastically, causing
severe workload imbalance. Existing systems such as Dist-
DGL (Zheng et al., 2020), AliGraph (Yang, 2019) and Pa-
Graph (Lin et al., 2020) leverage off-the-shelf graph par-
titioning algorithms to address the problem. The issue is
that those graph partitioning algorithms are designed for
graph analytical applications where workload distribution
can be well modeled by the partition size. By contrast, GNN
workload is more complicated and the choice of sampling
algorithms can have noticeable impact on the workload dis-
tribution.

In this paper, we propose a novel load balancing strategy
designed for parallel training of GNNs. Our contributions
are as follows:

• We conduct analytical studies to reveal the key decid-
ing factors of a GNN workload and further show that
previous techniques fail to balance these factors.

• We propose a two-stage load balancing strategy, which
first distributes the workload by graph partitioning and
then adjusts the workload dynamically during training.
The strategy is general and applicable to a wide range
of sampling algorithms.

• We implement our proposed approach into one of the
state-of-the-art GNN frameworks – Deep Graph Li-
brary (DGL) (Wang et al., 2019a) and test its advantage
over previous strategies.

2 BACKGROUND AND MOTIVATION

2.1 GNN Mini-batch Training and Neighbor
Sampling

At its core, GNNs aim at learning from both topology and
node/edge attributes from graphs. This is achieved via the
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Algorithm 1 Neighbor Sampling

input G, Vtarget, fan-out 〈f1, f2, . . . , fL〉, node-wise sam-
pler q
VL ← Vtarget

for i = L to 1 do
SGi ← ∅, Vi−1 ← ∅
for v in Vi do

Draw fi samples 〈u1, . . . , ufi〉 using sampler qv .
SGi ← {(u1, v), . . . , (ufi , v)} ∪ SGi

Vi−1 ← {u1, . . . , ufi} ∪ Vi−1

end for
end for
return 〈SGL, . . . , SG1〉

Algorithm 2 Parallel Mini-batch Training for GNNs

Each trainer gets a subset of the full training set.
loop
seeds← next batch of training nodes.
subg ← NeighborSampling(seeds, fanout)
feats← feature data of input nodes in subg.
Run forward and backward computation.
Synchronize gradients among trainers.
Update parameters.

end loop

message passing mechanism (Gilmer et al., 2017); at each
GNN layer, nodes collect messages from their neighbors,
aggregate and combine them with the nodes’ current repre-
sentations to generate ones for the next layer. Define target
nodes to be the nodes to compute representation for, batch
size to be the number of target nodes, and receptive field to
be the nodes which target nodes to gather messages from.
Then the size of receptive field grows exponentially with
more layers in a GNN model. The induced cost of commu-
nication and computation essentially prohibits training deep
GNN models on large graphs.

To mitigate the problem, one common strategy is to collect
messages from a sampled neighborhood (Algorithm 1) Fig-
ure 1 illustrates one sampled subgraph starting from target
nodes A and B. The choice of sampling algorithms is an ac-
tive research, with proposals such as importance-based sam-
pling (Huang et al., 2018), type-aware sampling (Hu et al.,
2020), bandit sampler (Liu et al., 2020), etc. The training
procedure then resembles the iterative process of stochastic
gradient descent; at each iteration, the GNN model performs
forward propagation using the sampled subgraph and the ex-
tracted node/edge features, computes gradients by backward
propagation and updates the parameters.

A B
C

D

Figure 1. A mini-batch generated by a 2-layer neighbor sampling
from two target nodes A and B. Orange nodes are the one-hop
neighbors and yellow nodes are two-hop neighbors. Node C is
shared by two neighbors of node B while Node D is covered by
the receptive fields of both A and B.

2.2 Parallel GNN Training and Workload Balancing

The mini-batch training algorithm mentioned above can
be easily parallelized in a synchronous data parallelism
paradigm, as implemented in some distributed GNN sys-
tems (Zheng et al., 2020; Alibaba, 2019; Yang, 2019). As
shown in Algorithm 2, the training set is first distributed
to the trainers. In each iteration, each trainer samples a
subgraph from the full graph, fetches the required feature
data and copies them to computing device such as GPU.
After forward and backward computation, all trainers need
to synchronize gradients with each other before updating the
parameters. This global synchronization requires all trainers
to have balanced workload.

To speed up the training process, systems like PaGraph (Lin
et al., 2020) and DistDGL (Zheng et al., 2020) adopt non-
trivial workload distribution algorithms. PaGraph proposes
a graph partitioning algorithm to improve the cache effi-
ciency and reduce cross-partition visits. DistDGL uses the
METIS algorithm (Karypis & Kumar, 1998a;b) to gener-
ate hierarchical graph partition scheme to minimize the
cut edges set across partitions while roughly balance the
number of nodes, which is friendly for multi-machine-multi-
GPU training. As illustrated in Figure 2, DistDGL first
partitions a graph to multiple machines. Each machine can
have multiple trainers, each owning one GPU. Trainers on
the same machine can access the local partition data via
shared memory, or issue network requests to remote ma-
chines. Furthermore, DistDGL uses the in-degree (i.e. the
size of the 1-hop neighborhood) as one dimension of the
node weight vector to roughly balance the number of edges.
DistDGL also splits training sets hierarchically and assigns
them based on locality constraints.

However, the approach based on graph partitioning algo-
rithms are not sufficient to balance the GNN workload
among trainers. To highlight it, we trained a GraphSAGE
model using DistDGL on four trainers and plotted the it-
eration time of each trainer in Figure 3. It clearly shows
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Figure 2. Graph partitioning and training set assignment in Dist-
DGL.
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Figure 3. The iteration time when training a GraphSAGE model
with four trainers using DistDGL. The running time varies across
trainers indicating workload imbalance. Larger batch size increases
running time but not linearly.

a severe workload imbalance as trainer 3 is 2x faster than
the others. This motivates our work to first understand the
root cause behind and further proposes new load balancing
techniques.

Other notable related work include NeuGraph (Ma et al.,
2019), which is aimed at parallel full graph training. Tra-
ditional graph analytic systems also pay attention to load
balancing. Gemini (Zhu et al., 2016) adopts locality-aware
chunking and fine-grained work-stealing for improving both
inter-node and intra-node load balance. Mizan (Khayyat
et al., 2013) monitors the runtime characteristics of the sys-
tem and performs vertex migration to balance workload.
Gunrock (Wang et al., 2016) proposes load balancing strate-
gies for efficient graph algorithms in CUDA.

3 UNDERSTAND LOAD IMBALANCE IN
PARALLEL GNN TRAINING

In this section, we breakdown the parallel GNN training al-
gorithm (Alg. 2) and analyze their contributions to balancing
workload.

• Graph sampling: Despite the fact that all trainers share
the same sampling configurations (e.g., batch size, fan-
outs, etc.), the sampling workload can still vary across
trainers. As shown in Alg. 1, the complexity is affected
by not only by the size of Vtarget (i.e., batch size) but
also the size of each node frontier Vi. The choice of
nodes in Vi has a large impact on the size of Vi−1

even under the same algorithmic setting as shown in
Figure 5. Another contributing factor is how many
nodes in each Vi are remote nodes, as they will add to
the cost of issuing network requests to sample from
other machines.

• GNN computation: There are two parts of computation
workload: (1) the forward and backward propagations
of the GNN model on the sampled subgraphs, and
(2) updating model parameters by the synchronized
gradients. Because the GNN model is replicated across
all trainers, the workload size is thus decided by the
structure of the sampled subgraphs on each trainer.

• Data communication: Data communication happens at
two locations. First, before calculating the forward and
backward propagations, each worker needs to fetch
the input feature data of the receptive fields (either
from local storage or via network). Second, at the end
each iteration, all trainers need to send out the local
gradients for synchronization. Similarly, due to param-
eter sharing, the gradient synchronization workload is
evenly split among trainers. For the cost to fetch input
features, there are further two deciding factors: the
input feature size and the input feature locality which
determines the amount of data to fetch via network
communication.

The general principle throughout the analysis is to ignore
factors that are model dependent such as parameter synchro-
nization, the choices of sampling configurations and the
choices of GNN model configurations (e.g., feature, hidden
dimension) because the models are replicated across train-
ers. While for the influence from the sampled subgraphs,
we can measure it by the following metrics:

• Node frontier sizes |VL|, . . . , |V1|, which affects graph
sampling and GNN computation. |V1|, in particular,
determines the amount of feature data to fetch at each
training iteration.
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(a) Relative node frontier size of each layer. The Y-axis is the ratio of
the number of nodes to the least number among four trainers
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(c) remote frontier node ratio of each layer

Figure 4. The current graph partition algorithm fails to balance the
sample size

• Number of sampled edges |EL|, . . . , |E2|, which af-
fects GNN computation. In many cases, |Ei| =
|Vi| ∗ fi.

• Remote frontier node ratio RL, . . . , R1, which affects
graph sampling and input feature fetching.

To evaluate how existing systems balance these factors,
we train a 3-layer GraphSAGE model on the OGBN-
PAPER100M dataset (Hu et al., 2021) (111,059,956 nodes,
1,615,685,872 edges) using DistDGL (Zheng et al., 2020)
in a cluster of 4 trainers. The batch size is 5000 for each
trainer and the sampling fan-outs are 15, 10, 5 for each layer.
Figure 4(a) and (b) compares the node frontier sizes and
the number of sampled edges of each trainer normalized by
the results of trainer 3. Figure 4(c) plots the remote frontier
node ratio of each trainer. These metrics are averaged across
600 batches (10 epochs) and we find that the variance is
negligible (<1%). The results indicate a severe imbalance
among different trainers. For example, trainer 3 has almost
50% fewer nodes in the input frontier compared with other

Target nodes

1-hop neighbors
collision

Figure 5. Even with the same batch size and sampling setting,
different target node sets can lead to different node frontier sizes.
In the left examples, the two target nodes share a common neighbor
so it generates a node frontier size of three, while in the right
example, there are four nodes in the next frontier.

trainers. The ratio of remote nodes in each frontier also
varies among trainers. All these factors contribute to the
imbalanced running time observed in Figure 3.

4 PROPOSED METHOD

The fundamental reason why current graph partitioning al-
gorithms fail to balance workloads is that they are not par-
ticularly designed for parallel GNN training. Many graph
partitioning algorithms aim at minimizing the number of
cross-partition edges or the number of replicated nodes
while balancing the number of nodes and edges in each
partition. However, we have shown that the workload bal-
ance of parallel GNN training is characterized by a different
set of metrics and thus demands different solutions.

Moreover, it is worth emphasizing that the sampling algo-
rithm has a remarkable impact on the workload balance.
Since users may search for suitable sampling algorithms
during development or deployment, the load balancing strat-
egy must adapt to them too. However, dynamically adjust-
ing graph partitions or re-partitioning can be highly time-
consuming, especially for giant graphs.

We thus propose to tackle the challenge of load balance in
two folds. Before training, we employ the graph partitioning
algorithm in DistDGL to generate static graph partition
scheme that minimizes the cut edge set and meanwhile
roughly balances the number of nodes and edges among
partitions. During training, we keep track of the training
time of all trainers and adjust their workload accordingly.
We utilize the fact that a training process typically involves
thousands or hundreds of thousands of mini-batches, so
runtime adjustment in the first few mini-batches can benefit
a longer run. In the following sections, we explain how
we adjust per-trainer workload by batch size and how we
further consider data locality in workload assignment.

4.1 Dynamic Adjustment of Per-trainer Workload

Our basic idea is to increase the workload of trainers that
finish one iteration faster while do the opposite for those that
are slower. There are a number of ways to achieve this goal,
but there are several criterion. First, the solution shall be
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Algorithm 3 Training with adaptive batch size tuning

input total batch size B, number of trainers N , rank of the
current trainer i, tuning period P
W← [1, 1, . . . , 1], Bi ← B

N
loop

Perform P training iterations and record iteration time
Ti

Synchronize across trainers and get their recorded time
T← [T−1

1 , T−1
2 , . . . , T−1

N ]
W←W �T
W← 1∑N

j=1 Wj
·W

Bi ←Wi ·B
Re-assign training nodes.

end loop

universal, i.e., applicable to all kinds of neighbor sampling
algorithms. Second, it shall be light-weighted and incurs
as little runtime overhead as possible. Third, it shall not
change the training results like model accuracy.

We choose to adjust the batch size of each trainer according
to their training time of one mini-batch. The insight is
that although there are multiple influencing factors to the
workload size of each mini-batch, the running time still
has a positive correlation with the batch size (Figure 3). In
addition, the approach is simple and needs no knowledge
of the neighbor sampling algorithm in use. We also keep
the total batch size unchanged to avoid impact on model
accuracy.

More formally, given the running time to train one mini-
batch of N trainers T1, T2, . . . , TN and a total batch size
B, we set the batch size of the i-th trainer (i.e. |Vtarget| in
Algorithm 1) as

Bi =
T−1
i∑N

j=1 T
−1
j

·B (1)

Because the relation between running time and batch size is
not linear, we propose an iterative algorithm to repeat the
profiling-then-tuning process multiple times until all trainers
finishes one iteration similarly fast as shown in Algorithm 3.

4.2 Locality-aware Training Set Assignment

After adjusting the batch size of each trainer, we then need
to decide the assignments of training node set. The assign-
ment happens at two levels: 1) splitting the training set
to each machine and 2) further splitting the training set to
the trainers on the same machine when each machine has
multiple GPUs. For the first level, we follow the range
partitioning practice from DistDGL which is friendly for
looking up which partition a node belongs to, but adjust

Training nodes in 
partition 0

Training nodes in 
partition 1

Training nodes in 
partition 2

Training nodes in 
partition 3

Remote training nodes 
added to machine 1

Training set assigned to machine 1

Split local and remote training nodes 
according to the batch size of each 
GPU respectively

Before adapting batch size 

After adapting batch size 

Remote training nodes 
added to machine 2

GPU0 GPU1 GPU2 GPU3

Figure 6. The training set assignment algorithm that takes locality
into consideration. Here, the cluster has four machines and each
machine has four GPUs. Suppose the total batch size of machine
1 increases after workload adjustment, so it is in charge of some
remote training nodes stored on machine 0 and machine 2. When
further assigning the workload to per-GPU trainers, we split local
and remote nodes respectively according to their batch sizes, keep-
ing the proportion of local and remote nodes equal for these four
GPUs.

the range each machine owns based on the ratio of the total
batch size of their trainers. For the second level, we further
take data locality into consideration. Note that the graph
partition scheme has been fixed before training so the train-
ing set assignment is not necessarily perfectly aligned with
the graph partitioning. Because training nodes that belong
to partitions on other machines require network requests to
perform neighbor sampling, it is important to balance them
among trainers. To address this, we separate the local and
remote training nodes, split them according to the batch size
of each trainer respectively, and then concatenate local and
remote nodes assigned to the same GPU (Figure 6).

5 EVALUATION

In this section, we evaluate our adaptive load balancing
method to show its effectiveness of balancing the workloads
in the cluster and accelerating the training.

Environment Our experiments are performed on 4 AWS
EC2 P3dn.24xlarge instances with 8 V100 GPUs on each
machine. We use PyTorch 1.7 as the backend.

Dataset We use the two datasets from Open Graph Bench-
mark(Hu et al., 2021) shown in Table 1.

Hyper-parameter We run the experiments with two sets
of hyper-parameters. One is from the GraphSAGE submis-
sion on the leader board of Open Graph Benchmark. It has
three layers, of which the fan-out is 15, 10 and 5 respec-
tively. The other one is heavier and has four layers, of which
the fan-out is 10, 10, 5 and 5. The initial batch size is 2000
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Figure 7. The performance gain of adaptive load balancing strat-
egy with different number of trainers and workload on two OGB
datasets.

for each trainer, except for the heavy hyper-parameters on
OGBN-Papers100M dataset, where the initial batch size is
5000 for each trainer.

We evaluate our method with different numbers of trainers.
For each setting, we respectively run the experiments with 2
GPUs and 8 GPUs on each machine. In the latter scenario,
the whole graph is partitioned to 32 parts in total. We adapt
the batch size and re-split the training set at the end of every
10 training iterations.

We measure the increase in throughput (the number of sam-
ples processed per second) when the adaptive load balancing
is enabled. As shown in Figure 7, for the three-layer Graph-
SAGE model, the adaptive load balancing strategy can bring
a performance gain of 6% to 13% . As the model depth
increases and the receptive field extends, the performance
gain can achieve 25%.

Figure 8 shows the average iteration time of each trainer
in the training process of a 4-layer GraphSAGE model on
OGBN-Products dataset with a cluster of 4 machines which
contains 2 GPUs. Because we can not take apart the back-
ward computation and parameter synchronization in Py-
Torch, these parts are not included in the timing. In other
words, we only take the time of sampling, data copying and
forward computation into consideration. As shown in the
figure, our method successfully balances the iteration time
among trainers.

In addition to the training speed, we also verify the train-
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Figure 8. Iteration time (excluding backward and synchronization)
of 8 trainers before and after batch size tuning
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Figure 9. The test accuracy curve of training a GraphSAGE model
on ogbn-products dataset before and after batch size tuning. The
result shows they converge to the same accuracy.

ing accuracy when the adaptive load balancing strategy is
enabled. We run a three-layer GraphSAGE model on the
OGBN-Products dataset using a cluster of 4 machines with
2 GPUs on each machine. Experiments show the accuracy
converges to almost the same peak value achieved by the
baseline.

6 CONCLUSION

We propose a novel adaptive load balancing strategy for
parallel training of GNNs. We conduct an empirical and an-
alytical study of the load imbalance problem of the existing
GNN systems. Based on the observation of the monotonic
relation between batch size and running time, we propose
a novel load balancing strategy, which adapts to the dif-
ferent sampling algorithms dynamically. We implement
it into one of the state-of-the-art GNN frameworks Deep
Graph Library(Wang et al., 2019a) and test its advantage
over previous strategies. Our evaluation shows that the strat-
egy effectively produces more balanced workloads which
accelerates the training by 25%.
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Table 1. Dataset statistics from the Open Graph Benchmark (Hu et al., 2021).

Dataset # Nodes # Edges Node Features

OGBN-PRODUCT 2,449,029 61,859,140 100
OGBN-PAPERS100M 111,059,956 3,231,371,744 128
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