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ABSTRACT
Heterogeneous Information Networks (HINs) are a promising alternative for representing clinical events that
contain inter-related and multi-typed data, such as patient data and their relationships with medical diagnoses,
description of symptoms, anamnesis, and observations. Network embeddings methods propose mapping an
information network to a latent space (i.e., embedding space) to preserve the structure in a low dimensional vector
space, thereby enabling the use of machine learning methods based on vector-space models. However, since
most network embeddings methods do not consider strategies for omitting users’ private features, adversaries
can use embeddings to infer sensitive user information. Moreover, recent proposed methods are suitable only
for homogeneous networks. We propose the Private Heterogeneous Information Network Embeddings (PHINE)
approach for privacy-preserving heterogeneous network embedding for clinical events. We explore Graph
Autoencoders (GAE) with an objective function that simultaneously maximizes the embeddings’ usefulness for
classification tasks (i.e., preserving HIN properties and topology) and minimizes the effectiveness of inference
attacks from embedding (i.e., hiding private information). To the best of our knowledge, this is the first privacy-
preserving approach on clinical events data for heterogeneous networks. The experimental results reveal that
PHINE presents a competitive trade-off between privacy-preserving and utility feature prediction.

1 INTRODUCTION

Electronic Health Records (EHR) databases have become
increasingly popular in data mining and machine learning
tasks (Ghassemi et al., 2020). The aim is to extract valuable
knowledge from patient’s health data toward supporting
medical decision-making. EHR data contains unstructured
textual information from medical diagnoses, including a de-
scription of symptoms, anamnesis, and observations. EHR
also holds structured data, such as the patient’s age, sex,
weight, socioeconomic information, and different structured
information from clinical examinations. Thus, a challenge
is to obtain an appropriate representation from EHR datasets
that considers both structured and unstructured patient data
as well as their relationships (Hosseini et al., 2018).

Heterogeneous Information Networks (HINs) are a promis-
ing alternative for representing datasets that contain inter-
related and multi-typed data (Shi et al., 2017). HINs have
nodes of different types, such as patients and medications.
Links or connections represent relationships between pa-
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tients and clinical events. Because HINs are powerful for
modeling complex data relationships, network embedding
methods propose mapping an information network to a la-
tent space (i.e., embedding space) to preserve the structure
in a low dimensional vector space (Cui et al., 2019).

Network embedding methods have been successful in many
applications (Cui et al., 2019). Many projects make the net-
work embeddings publicly available for machine learning
tasks such as classification, clustering, and recommendation,
which demands omitting the original information network
to preserve sensitive information. However, studies showed
that inference attacks allow reconstructing the network struc-
ture to predict sensitive and private features (Kong et al.,
2020). Yet, techniques to sanitize network data through
noise or graph pruning have not been successful in mitigat-
ing such attacks (Cai et al., 2018; He et al., 2018).

Existing privacy-preserving network embedding methods
consider only homogeneous information networks formed
by a single type of node and relationship (Xu et al., 2018;
Zhang & Ni, 2019; Li et al., 2020). Moreover, LGPD and
GPDR data protection laws introduce the Right to Erasure
right that obligates data holders to conceal users’ private
information. Thus, we raise the following question: how to
learn privacy-preserving embeddings from clinical events
heterogeneous networks?
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In this paper, we propose the Privacy-Preserving Heteroge-
neous Information Network Embeddings (PHINE) approach
for clinical events. Our approach generates embeddings in
two stages. The first stage models the heterogeneous net-
work from an EHR dataset and uses the textual information
nodes to generate initial embeddings using a pre-trained
neural language model. We use a network regularization
framework to propagate the initial embeddings to all remain-
ing nodes in the heterogeneous network. This stage provides
embeddings for machine learning tasks that are vulnerable
to inference attacks. The second stage uses a GAE (Graph
Autoencoder) (Kipf & Welling, 2016) to both (i) preserve
utility features with maximization of the reconstruction of
the first stage embeddings and the respective HIN, and (ii)
penalize the Autoencoder optimization function when infer-
ence attacks are successful. The GAE explores two advances
in representation learning for graphs: graph convolutional
network to learn how to preserve important HIN informa-
tion (utility features) and adversarial learning to minimize
inference attacks and omit sensitive information (private
features).

Our experimental evaluation used a synthetic EHR dataset
to generate the clinical events heterogeneous network. We
evaluated PHINE considering the embedding usefulness for
classification tasks and its ability to preserve private infor-
mation from inference attacks. The experimental results
indicate that our approach presents a competitive trade-off
between privacy-preserving and utility feature prediction.

2 RELATED WORK

Heterogeneous Information Networks (HINs) have been
successful in several real-world applications such as biblio-
graphic citation networks (Zhou et al., 2019), recommender
systems (Shi et al., 2019), and medical diagnosis from EHR
datasets (Hosseini et al., 2018). The use of relational data
representations pose challenges to network processing and
analysis (Cui et al., 2019), such as high computational com-
plexity, low parallelizability, and inapplicability of machine
learning algorithms based on vector-space models. Network
embeddings have been used to address these challenges
(Goyal & Ferrara, 2018).

Network embeddings use a low dimensional vector repre-
sentation for each node, in which topological and structural
characteristics of a node are encoded in the embedding
space.

Recently, authors report applying deep learning methods to
network embedding. Graph Autoencoders (GAE) (Kipf &
Welling, 2016) embeds a graph to a low dimensional space
using Graph Convolutional Network (GCN). GCN is an
extension of Convolutional Neural Network CNN for graph-
structured data (Zhang et al., 2020). An advantage of GCN

is to explore node attributes, network topology, and labeled
information for learning representation in a semi-supervised
way (Wu et al., 2021).

Kong et al. (2020) observe that users’ private information
is vulnerable in network embeddings. The model inversion
attack, for example, uses a set of labeled data (obtained from
trading or hacking (Al-Rubaie & Chang, 2019)), trains clas-
sification or regression models, and infers private attributes
from the embeddings (Ellers et al., 2019).

Towards preventing attacks, Xu et al. (2018) and Zhang
& Ni (2019) implement differential privacy by adding and
removing links among and nodes in the network. However,
these methods do not deal with inference attacks on users’
private features. Jia & Gong (2018), Cai et al. (2018) and
He et al. (2018) propose achieving privacy preservation by
direct sanitization of graphs topology. Sanitization can fail
in cases of no prior knowledge about the domain because it
requires identifying which attributes, links and nodes are the
most correlated with private information. To tackle those
gaps, Li et al. (2020) developed the Adversarial Privacy
Graph Embedding (APGE) framework for homogeneous
networks. Their approach combines graph convolutional
networks and adversarial training to integrate the Privacy-
Disentangled and Privacy-Purged mechanisms.

Given the promising results for privacy-preserving embed-
ding achieved by Li et al. (2020), we extend their approach
for heterogeneous networks of clinical events.

3 PRIVATE HETEROGENEOUS
INFORMATION NETWORK EMBEDDING

3.1 Problem Definition

Patient data from EHR (Electronic Health Records) datasets
can be organized into clinical events. In particular, we are in-
terested in textual excerpts from the EHR, such as treatment
descriptions, laboratory tests, symptoms and prescriptions.
A clinical event can be defined as a triple e = (~pi, tj , ~utj ),
where ~pi represents the feature vector of the i-th patient, tj
represents some textual information extracted from the pa-
tient’s EHR, and ~utj represents the feature vector generated
from the textual information tj after the use of some word
embedding model.

A set of n clinical events E = {e1, e2, ..., en} extracted
from an EHR dataset is very useful for a wide variety of
machine learning algorithms and medical applications. In
clinical events, the ~pi features of each patient are private
(e.g. gender, age, ethnicity, location, and other personal in-
formation) and should not be available for these algorithms.
On the other hand, ~utj represent utility features and contain
relevant knowledge for machine learning algorithms.

A trivial strategy for dealing with private features is to re-
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move the ~pi from clinical events. However, several works
in the literature demonstrate that inference attacks from the
utility features allow to recover the private features with
significant accuracy. Thus, in addition to removing such
private features from clinical events, we aim to obtain a new
representation of clinical events that respects two conditions:
(1) preserve the relevant knowledge of the utility features
and (2) avoid inference attacks of the private features from
utility features.

Formally, we aim to learn a mapping function f : E → Zd

from clinical events E to a d-dimensional representation
Z, in which Z respects the two conditions above. Our rep-
resentation learning approach explores clinical events as a
heterogeneous network, followed by a privacy-preserving
network embedding method.

3.2 Heterogeneous Network for Clinical Events

Let N = (O,R,W) be a heterogeneous network where O
is a set of nodes,R is a set of relations between the nodes
and W represents the weights of the relations. Clinical
events are mapped on a heterogeneous network using two
types of nodes: (i) patients and (ii) textual excerpts extracted
from the EHR, as shown in Figure 1. The patient-type nodes
have their respective private vector features ~p. The links
indicate when a patient is related to some textual information
extracted from the EHR. Moreover, the network topology
indicates when two or more patients share the same utility
features extracted from the texts.

Figure 1. Example of heterogeneous network of clinical events.

To obtain the utility features for patients, we use a regular-
ization framework for graph-based learning. The general
idea is to propagate the utility features information to the
patient nodes considering the network topology. We extend
the regularization framework for heterogeneous networks
proposed by Li et al. (2020) to deal with specific charac-
teristics of clinical events, in which two assumptions need
to be satisfied: (1) patients who share neighboring nodes
must have similar utility features; and (2) textual nodes must

preserve their original utility features.

Q(X) =
1

2

∑
oi,oj∈O

woi,oj (~xoi−~xoj )2+µ
∑

ok∈OT

(~xok−~uok)2

(1)

Equation 1 defines the objective function to be minimized
for the utility feature propagation process. The first term
of the equation is related to the first assumption, where the
utility features ~xoi and ~xoj generated for two neighboring
nodes oi and oj must be similar, for all pairs of nodes with
weight woi,oj > 0 (woi,oj ∈ W). The second term is
related to the second assumption, in which OT indicates
the subset of nodes that represent the textual information
extracted from the EHR and (~xok − ~uok)2 indicates that the
learned utility features ~xok must be similar to the original
utility features ~uok . The higher the value of the µ parameter
(µ > 0), the more the original utility features are preserved.
After regularization, X is a learned utility features matrix for
all nodes in the heterogeneous network, including patient-
type nodes.

Equation 1 is a convex optimization problem and different
solvers can be used for minimization. In this paper, we use
the traditional iterative technique based on label propagation
proposed in (Zhou & Schölkopf, 2004), since it obtains
solutions close to conventional solvers and is suitable for
dealing with large heterogeneous networks.

3.3 Privacy-Preserving Heterogeneous Network
Embedding

In the previous step, we generated utility features for node
patients, but without considering possible inference attacks
of the private features. If the feature matrix X is made pub-
licly available for machine learning tasks, then an attacker
who obtains a partial set of private features Y can train a
classifier (or regressor) in X (as input data) and Y (as labels)
to infer the other users’ private features.

The embeddings learning from the heterogeneous network
can be adapted to mitigate the inference attacks of the private
features. PHINE employs Graph Convolutional Networks
(GCN) to generate an embedding Z = GCN(A,X), where
A is an adjacency matrix derived from the weights of rela-
tionshipsW between nodes in the heterogeneous network
and X is the utility feature matrix. A GCN has the steps of
encoder and decoder. Equation 2 represents the encoder step,
where H(l) is the output of the l-th graph convolutional layer.
The input layer is the feature matrix itself, i.e., H(0) = X.
The last layer q represents the embeddings Z = H(q). The
matrix L = D−

1
2SD−

1
2 is the symmetrically normalized

graph Laplacian. In this case, S is the adjacency matrix A
with all diagonal elements set to 1 (with self-loops), and
Dii =

∑
j Sij is a matrix with the degree of node oi ∈ O.
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Finally, W(l) denotes the weights of the l-th GCN layer and
σ represents the neuron activation function.

H(l+1) = σ(LH(l)W(l)) (2)

The GCN encoder step aims to generate the embeddings
Z that maintain topological properties of the heteroge-
neous network and preserve utility matrix X from EHR
data, i.e., to reconstruct an approximate adjacency matrix
Â = σ(ZZT ) in the GCN decoder step, where ZT denotes
the transpose of a matrix Z. Thus, GCN loss function opti-
mizes the link prediction according to Equation 3, where A
is the original adjacency matrix and Â is the approximate
adjacency matrix through the embeddings.

Ladj = −
1

|O|2

|O|∑
i=1

|O|∑
j=1

Aij log(Âij) (3)

Now, we want to extend the GCN decoder step to consider
the reconstruction of utility features and private features, in
addition to reconstruction via link prediction. In this sense,
we adapted the privacy-preserving embedding technique for
homogeneous networks proposed by (Li et al., 2020) to deal
with heterogeneous networks. Equation 4 defines the infer-
ence of labels related to private features yprivi of the i-th
node from the embeddings zi, where ŷpriv = softmax(zi)
represents a node oi classification output by using the em-
bedding zi as input and the one-hot generated by private
features as labels. An important aspect that we consider dur-
ing training is that this step is related to patient-type nodes.
Thus, we use a trick that generates a fake private label for
all nodes that do not belong to the patient type, thereby
allowing the model training for heterogeneous networks.

Lattk = − 1

|O|

|O|∑
i=1

yprivi log(ŷprivi ) (4)

Similarly, Equation 5 defines the inference of labels related
to utility features. In this case, we feed the network with
the utility features labels that the embeddings must pre-
serve. The classification of a node oi is given by means
of ŷutil = softmax(z+i ), where z+i is a concatenation of
the embedding zi with the privacy labels of node oi. This
strategy allows to extract from the private features the min-
imum information necessary for the utility prediction. To
deal only with patient-type nodes, we use the same trick
described previously for heterogeneous networks, where a
fake utility label is used to identify when the node belongs
to the patient type.

Lutil = −
1

|O|

|O|∑
i=1

yutili log(ŷutili ) (5)

The GCN final loss function is described in Equation 6.
Note that while the terms Ladj and Lutil must be minimized
during training to reduce the reconstruction error of the links
and the utility features prediction, the term Lattk receives a
negative sign to penalize the loss function when embeddings
can infer private features. Thus, during training we want a
trade-off between preserving utility features and avoiding
inference attacks.

Loss = Ladj + Lutil − Lattk (6)

Different architectures can be used for network embedding.
We follow the original architecture proposed by (Li et al.,
2020), which uses two convolutional layers combined with
a generative adversarial network for the encoder step. Thus,
a discriminator is incorporated into the encoder step to clas-
sify real nodes or noisy nodes generated from some prede-
termined distribution. Moreover, the proposed fake label
trick to enable privacy-preserving embeddings in hetero-
geneous networks incorporates structural information into
embeddings to determine when a node represents a patient
or represents a clinical diagnosis, such as treatment, descrip-
tions, laboratory tests, symptoms and prescriptions.

4 EXPERIMENTAL EVALUATION

4.1 Datasets and Baselines

We used a synthetic EHR generator called Synthea1 for the
experimental evaluation. In the experimental evaluation,
patient data about care plans payments (e.g. payers, organi-
zations, and payer transitions) or that isn’t directly related
to patients (e.g. supplies and providers) were disregarded
during heterogeneous network construction. The network
was constructed as described in Section 3.2. Patient nodes
have eight attributes: node type, ethnicity, birth, death, gen-
der, age category, marital and city. Textual information
extracted from medical diagnoses, treatments, symptoms
and observations were added as nodes in the heterogeneous
network and connected to the respective patients. Network
final structure was composed of 1834 nodes and 78055
edges. We compared PHINE to the following baselines:

• kNN-HN: Utility and private label prediction without
privacy-preserving mechanisms. We apply kNN classi-
fiers directly from the utility features matrix X derived from
the regularization framework, for both utility and private fea-
ture predictions. The idea is to make a comparison on how

1https://github.com/synthetichealth/

https://github.com/synthetichealth/
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Table 1. Utility feature (Prediabetes) and Private feature (Gender) evaluation.
Utility Feature (Prediabetes) Private Feature (Gender)

ACC F1 ACC F1

kNN-HN 0.87 ± 0.01 0.83 ± 0.03 0.70 ± 0.03 0.70 ± 0.04
Data Sanitization + GCN 0.87 ± 0.02 0.85 ± 0.02 0.69 ± 0.03 0.68 ± 0.03
PHINE 0.77 ± 0.02 0.72 ± 0.02 0.66 ± 0.02 0.66 ± 0.02
Inferences by class distribution 0.61 ± 0.01 0.50 ± 0.04 0.49 ± 0.02 0.49 ± 0.03

Table 2. Utility feature (Otitis media) and Private feature (Marital) evaluation.
Utility Feature (Otitis media) Private Feature (Marital)

ACC F1 ACC F1

kNN-HN 0.92 ± 0.02 0.80 ± 0.06 0.74 ± 0.01 0.62 ± 0.01
Data Sanitization + GCN 0.92 ± 0.02 0.80 ± 0.04 0.75 ± 0.03 0.59 ± 0.02
PHINE 0.90 ± 0.01 0.73 ± 0.02 0.60 ± 0.03 0.49 ± 0.01
Inferences by class distribution 0.79 ± 0.01 0.50 ± 0.02 0.33 ± 0.02 0.44 ± 0.03

much our privacy-preserving mechanism in heterogeneous
networks allows to reduce the inference attacks.

• Data Sanitization + GCN. We use a recent strategy for
defending inference attacks by perturbing the graph struc-
ture, as discussed in (Cai et al., 2018). In our context, we
generate different noisy versions of the heterogeneous net-
work using link removal and then network embeddings is
obtained via GCN.

• Inferences by class distribution. Both utility labels and
private labels are predicted in a pseudo-random manner
according to the training set’s class distribution.

4.2 Results

We evaluated PHINE by generating a 64-dimensional em-
bedding via privacy-preserving heterogeneous network em-
bedding. The generated embeddings are used as input for
a kNN classifier (k = 3 and Euclidean distance) to predict
utility features and private features. In this case, we use such
features as labels during kNN classification. The Data San-
itization + GCN approach also generates 64-dimensional
embeddings. The kNN-HN approach does not perform
privacy-preserving network embeddings and the evaluation
is performed directly on the textual embeddings generated
through the regularization framework (Section 3.2). The ini-
tial embeddings are generated using Sentence-Transformers
DistilBERT2 language model.

We defined two experimental evaluation scenarios. In the
first, we selected as (binary) label for utility features the
occurrence of “Prediabetes”, and the “Gender” was selected
as a private feature. In the second, the occurrence of “Otitis
media” was selected as a label (binary) for the utility fea-
tures and the “Marital” status (Married, Single and Others)

2https://www.sbert.net/

was selected as private feature.

Tables 1 and 2 provide a classification performance overview
for each scenario (10-fold Cross-validation). The goal is to
maximize the Accuracy (ACC) and F-Measure (F1) metrics
for the utility prediction task and minimize these metrics for
private features prediction task (which simulates an infer-
ence attack).

The kNN-HN approach achieves greater performance for
utility prediction in both scenarios. However, kNN-HN
demonstrates its inefficiency in mitigating private informa-
tion inference attacks. The private attributes of Gender and
Marital were recovered with 0.70 of ACC in both scenarios,
thereby indicating a successful inference attack. Private fea-
tures Gender and Marital are inferred with 0.49 and 0.33 of
ACC using the Inferences By Class Distribution approach.

Data Sanitization approach was unsatisfactory in privacy-
preserving for heterogeneous networks in medical data.
Clinical events have a large number of diagnoses, labora-
tory tests, symptoms that are highly related to some private
features, making it difficult to identify which links should
be removed to avoid inference attacks. Even using data
sanitization, a small reduction in ACC and F1 metrics was
obtained for private feature prediction.

PHINE presented promising results for privacy-preserving,
especially for the second scenario. Inference attacks for
the private attribute Marital were reduced to values close to
Inference by class distribution for the F1 metric. Although
with lower performance, some level of privacy-preserving
was also achieved in other scenario (Gender) and metrics.
Note that the private attribute Gender can be closely associ-
ated with the utility prediction task itself. Thus, preserving
this information in embeddings can reduce utility predic-
tion. However, PHINE achieves a trade-off between privacy-

https://www.sbert.net/
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(b) 2D embeddings projection with PHINE.

Figure 2. Two-dimensional embeddings projection. The colors
indicate the private Gender feature.

preserving and utility prediction that can be better explored
in the future with some strategy to consider the importance
level of each feature. To illustrate the effect of PHINE on
privacy preservation, Figure 2a shows a two-dimensional
projection of patient embeddings extracted directly from the
regularization stage (utility features from textual data) and
Figure 2b shows a projection after the privacy-preserving
step for the Gender feature. The colors indicate the Gender
feature. Figures 3a and 3b show this same comparison for
the Marital feature.

We observed that embeddings without privacy-preserving
(Figures 2a and 3a) have some clustering structures corre-
lated with private features, which explains the good perfor-
mance of inference attacks. On the other hand, embeddings
generated via privacy-preserving (Figures 2b and 3b) hide
such structures in relation to private features, without reduc-
ing the embedding usefulness for classification tasks.

The experimental results provide evidence that PHINE incor-
porates privacy preservation during heterogeneous network
embedding for clinical events. Moreover, PHINE differs
from the Data Sanitization approach because the latter de-
pends on a detailed analysis of the removal of links and
some human supervision in real-world scenarios.
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(a) 2D embeddings projection without PHINE.
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(b) 2D embeddings projection with PHINE.

Figure 3. 2D embeddings projection. The colors indicate the pri-
vate Marital feature.

5 CONCLUDING REMARKS

PHINE is a novel approach to concealing private informa-
tion against inference attacks on heterogeneous network em-
beddings from Electronic Health Records (EHR). PHINE
exploits network embeddings (Goyal & Ferrara, 2018) by ex-
tending, to heterogeneous networks, the privacy-preserving
embedding approach proposed by Li et al. (2020).

Unlike existing approaches that sanitize datasets to remove
private information, PHINE uses Graph Autoencoders to (1)
maximize the embedding usefulness for classification tasks
and (2) to minimize inference attacks of private features.
Experimental results show that PHINE obtains a good trade-
off between these two objective functions. Directions for
future work involve considering different importance levels
for each objective function.
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