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ABSTRACT
Graph Neural Network (GNN) research is rapidly growing thanks to the capacity of GNNs to learn representations
from graph-structured data. However, centralizing a massive amount of real-world graph data for GNN training
is prohibitive due to user-side privacy concerns, regulation restrictions, and commercial competition. Federated
learning (FL), a trending distributed learning paradigm, aims to solve this challenge while preserving privacy.
Despite recent advances in vision and language domains, there is no suitable platform for the federated training of
GNNs. To this end, we introduce FedGraphNN, an open research federated learning system and a benchmark
to facilitate GNN-based FL research. FedGraphNN is built on a unified formulation of federated GNNs
and supports commonly used datasets, GNN models, FL algorithms, and flexible APIs. We also contribute a
new molecular dataset, hERG, to promote research exploration. Our experimental results present significant
challenges in federated GNN training: federated GNNs perform worse in most datasets with a non-I.I.D split than
centralized GNNs; the GNN model that attains the best result in centralized setting may not hold its advantage
in the federated setting. These results imply that more research efforts are needed to unravel the mystery of
federated GNN training. Moreover, our system performance analysis demonstrates that the FedGraphNN
system is computationally affordable to most research labs with limited GPUs. We maintain the source code at
https://github.com/FedML-AI/FedGraphNN.

1 INTRODUCTION

Graph Neural Networks (GNN) are state-of-the-art models
that learn representations from complex graph-structured
data in various domains such as drug discovery (Rong et al.,
2020b), social network recommendation (Wu et al., 2018a;
Sun et al., 2019; He et al., 2019b), and traffic flow modeling
(Wang et al., 2020b; Cui et al., 2019). However, for reasons
such as user-side privacy, regulation restrictions, and com-
mercial competition, there are surging real-world cases in
which graph data is decentralized, limiting clients’ data size.
For example, in the AI-based drug discovery industry, phar-
maceutical research institutions would significantly benefit
from other institutions’ private data, but neither cannot af-
ford to disclose their private data for commercial reasons.
Federated Learning (FL) is a distributed learning paradigm
that addresses this data isolation problem. In FL, training
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is an act of collaboration between multiple clients without
requiring centralized local data while providing a certain
degree of user-level privacy (McMahan et al., 2017; Kairouz
et al., 2019; He et al., 2019a).

Despite FL being successfully applied in domains like com-
puter vision (Liu et al., 2020; Hsu et al., 2020) and natural
language processing (Hard et al., 2018; Ge et al., 2020), it
has yet to be widely adopted in the domain of graph machine
learning. There are multiple reasons for this:

1. Most existing FL libraries, as summarized by (He et al.,
2020b), do not support GNNs. Given the complexity
of graph data, the dynamics of training GNNs in a
federated setting may be different from training vision
or language models. A fair and easy-to-use benchmark
is essential to distinguish the advantages of different
GNN models and FL algorithms;

2. The definition of federated GNNs is vague in current
literature. This vagueness makes it difficult for re-
searchers who focus on SGD-based federated optimiza-
tion algorithms to understand challenges in federated
GNNs;

3. Applying existing FL algorithms to GNNs is nontrivial
and requires significant engineering effort to transplant
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Figure 1. Formulation of FedGraphNN (Federated Graph Neural Network)

and reproduce existing algorithms to GNN models and
graph datasets. Recent works (Wang et al., 2020a;
Meng et al., 2021; Wu et al., 2021), only use the naive
FedAvg algorithm (McMahan et al., 2017), which we
demonstrate is sub-optimal in many cases.

To address these issues, we present an open-source federated
learning system for GNNs, namely FedGraphNN, that en-
ables the training of a variety of GNN models effectively
and efficiently in a federated setting as well as benchmarks
in non-I.I.D. graph datasets (e.g., molecular graphs). We
first formulate federated graph neural networks to provide a
unified framework for federated GNNs (Section 3). Under
this formulation, we design a federated learning system to
support federated GNNs with a curated list of FL algorithms
and provide low-level APIs for algorithmic research cus-
tomization and deployment (Section 4). We then provide
a benchmark on commonly used molecular datasets and
GNNs. We also contribute a large-scale federated molec-
ular dataset named hERG for further research exploration
(Section 5). Our experiments show that the straightforward
deployment of FL algorithms for GNNs is sub-optimal (Sec-
tion 6). Finally, we highlight future directions for federated
GNNs (Section 7).

2 RELATED WORKS

Federated Graph Neural Networks (FedGraphNN) lies at
the intersection of graph neural networks (GNNs) and fed-
erated learning. We mainly discuss related works that train
GNNs using decentralized datasets. (Suzumura et al., 2019)
and (Mei et al., 2019) use computed graph statistics for infor-
mation exchange and aggregation to avoid node information
leakage. (Sajadmanesh & Gatica-Perez, 2021) introduce a
privacy-preserving GNN model via local differential privacy
(LDP). (Zhou et al., 2020) utilize Secure Multi-Party Com-
putation (SMPC) and Homomorphic Encryption (HE) into
GNN learning for node classification. (Jiang et al., 2020)
propose a secure aggregation method to learn dynamic repre-
sentations from multi-user graph sequences. More recently,
(Wang et al., 2020a) use a hybrid method of federated learn-
ing and meta-learning to solve the semi-supervised graph
node classification problem in decentralized social network
datasets. (Meng et al., 2021) attempt to protect the node-
level privacy using an edge-cloud partitioned GNN model

for spatio-temporal forecasting tasks using node-level traffic
sensor datasets.

Our library is still in its early stage. Our vision is that
FedGraphNN should cover four types of GNN-based fed-
erated learning:

1. Graph level. We believe molecular machine learning
is a paramount application in this setting, where many
small graphs are distributed between multiple edge
devices;

2. Sub-graph level. This scenario typically pertains to
social networks or knowledge graphs that need to be
partitioned into many small sub-graphs due to data bar-
riers between different departments in a giant company,
as demonstrated in (Wu et al., 2021).

3. Node level. When the privacy of a specific node in a
graph is important, node-level GNN-based FL is useful
in practice. The IoT setting is a good example (Zheng
et al., 2020);

4. Link level is also a promising direction that is relevant
when the privacy of edges (eg: connections in a social
network) is of importance.

Although the current version of FedGraphNN only con-
tains graph-level GNN-based FL, other scenarios are also in
our plan.

3 FORMULATION: FEDERATED GRAPH
NEURAL NETWORKS

We consider a graph level GNN-based federated learning
setting where graph datasets are dispersed over multiple
edge servers that cannot be centralized for training due to
privacy or regulation restrictions. For instance, compounds
in molecular trials (Rong et al., 2020b) or knowledge graphs
for recommendation systems (Chen et al., 2020) may not be
shared across entities because of intellectual property con-
cerns. Under this setting, we assume that there areK clients
in the FL network, and the kth client has its own dataset

D(k) :=
{(
G

(k)
i , y

(k)
i

)}N(k)
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i = (V(k)
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the sample number in dataset D(k), and N =

∑K
k=1N

(k).
Each client owns a Graph Neural Network (GNN) model to
learn graph or node-level representations. Multiple clients
are interested in collaborating through a server to improve
their GNN models without necessarily revealing their graph
datasets.

We illustrate the formulation of Federated Graph Neural
Network (FedGraphNN) in Figure 1. Without loss of gen-
erality, we use a Message Passing Neural Network (MPNN)
framework (Gilmer et al., 2017; Rong et al., 2020c). Most
of the spatial-based GNN models (Kipf & Welling, 2016;
Veličković et al., 2018; Hamilton et al., 2017) can be unified
into this framework, where the forward pass has two phases:
a message-passing phase and a readout phase. The mes-
sage passing phase contains two steps: First, the model
gathers and transforms the neighbors’ messages. Then,
the model uses aggregated messages to update node hid-
den states. Mathematically, for client k and layer indices
` = 0, . . . , L−1, a L-layer MPNN is formalized as follows:

m
(k,`+1)
i = AGG
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where h
(k,0)
i = x

(k)
i is the kth client’s node features, ` is

the layer index, AGG is the aggregation function (e.g., in
the GCN model, the aggregation function is a simple SUM
operation), Ni is the neighborhood set of node i (e.g., 1-
hop neighbors), and M

(k,`+1)
θ (·) is the message generation

function which takes the hidden state of current node hi, the
hidden state of the neighbor node hj and the edge features
ei,j as inputs. U (k,`+1)

θ (·) is the state update function re-
ceiving the aggregated feature m

(k,`+1)
i . After propagating

through an L-layer MPNN, the readout phase computes a
feature vector for downstream tasks (node-level or graph-
level). For example, we can obtain the whole graph rep-
resentation using some readout function Rθ (·) according
to:

ŷ
(k)
i = Rθ

({
h
(k,L)
j | j ∈ V(k)

i

})
(3)

To formulate GNN-based FL, we define W =
{Mθ,Uθ,Rθ} as the overall learnable weights in client
k. In general, W is independent of graph structure (i.e.,
GNN models are normally inductive and generalize to un-
seen graphs). Consequently, we formulate GNN-based FL
as a distributed optimization problem as follows:

min
W

F (W )
def
= min

W

K∑
k=1

N (k)

N
· f (k)(W ) (4)

where f (k)(W ) = 1
N(k)

∑N(k)

i=1 L(W ;X
(k)
i ,Z

(k)
i , y

(k)
i ) is

the kth client’s local objective function that measures the lo-
cal empirical risk over the heterogeneous graph dataset Dk.
L is the loss function of the global GNN model. To solve
this problem, we utilize FedAvg (McMahan et al., 2017). It
is important to note here that in FedAvg, the aggregation
function on the server merely averages model parameters.
We use GNNs inductively, i.e. the model is independent of
the structure of the graphs it is trained on. Thus, no topolog-
ical information about graphs on any client is required on
the server during parameter aggregation. Other advanced al-
gorithms such as FedOPT (Reddi et al., 2020) and FedGKT
(He et al., 2020a) can also be applied.

4 FEDGRAPHNN SYSTEM DESIGN

We develop an open-source federated learning system for
GNNs, named FedGraphNN, which includes implemen-
tations of standard baseline datasets, models, and fed-
erated learning algorithms for GNN-based FL research.
FedGraphNN aims to enable efficient and flexible cus-
tomization for future exploration.

As shown Figure 2, FedGraphNN is built based on FedML
research library (He et al., 2020b) which is a widely used
FL library, but without any GNN support as yet. To dis-
tinguish FedGraphNN over FedML, we color-coded the
modules that specific to FedGraphNN. In the lowest layer,
FedGraphNN reuses FedML-core APIs but further sup-
ports tensor-aware RPC (remote procedure call), which en-
ables the communication between servers located at dif-
ferent data centers (e.g., different pharmaceutical vendors).
Enhanced security and privacy primitive modules are added
to support techniques such as secure aggregation in upper
layers. The layer above supports plug and play operation of
common GNN models such as GraphSage and GAT. Given
that graphs are likely to exhibit strong non-I.I.D. behavior,
we provide dedicated modules to handle non-I.I.D. split
algorithms and data loaders. Users can either reuse our
data distribution or manipulate the non-IIDness by setting
hyperparameters. Example code is shown in Figure 3. We in-
troduce details of FedML Client SDK in the Appendix.

5 FEDGRAPHNN BENCHMARK: DATASETS,
MODELS, AND ALGORITHMS

Non-I.I.D. Datasets. To facilitate GNN-based FL re-
search, we plan to support various graph datasets with non-
IIDness in different domains such as molecule machine
learning, knowledge graph, and recommendation system. In
the latest release, we use MoleculeNet (Wu et al., 2018b), a
molecule machine learning benchmark, as the data source
to generate our non-I.I.D. benchmark datasets. Specially,
we use the unbalanced partition algorithm Latent Dirichlet
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Figure 2. Overview of FedGraphNN System Architecture Design

Figure 3. Example code for benchmark evaluation with FedGraphNN

Allocation (LDA) (He et al., 2020b) to partition datasets in
the MoleculeNet benchmark. Besides, we provide a new
dataset, named hERG, related to cardiac toxicity and col-
lected from (Kim et al., 2021; Gaulton et al., 2017) with data
cleaning. Table 1 in the Appendix summarizes all datasets
we used in experiments. Figure 6 in the Appendix shows
each dataset’s non-I.I.D. distribution. More details and their
specific preprocessing details can be found in Appendix B.1
& B.2.

GNN Models and Federated Learning Algorithms.
FedGraphNN’s latest release supports GCN (Kipf &
Welling, 2016), GAT (Veličković et al., 2018), and Graph-
Sage (Hamilton et al., 2017) as the GNN models. The
readout function currently supported is a simple Multilayer
Perceptron (MLP). Users can easily plug their customized
GNN models and readout functions into our framework. For
FL algorithms, besides FedAvg (McMahan et al., 2017),
other advanced algorithms such as FedOPT (Reddi et al.,
2020) and FedGKT (He et al., 2020a) are also supported.
We refer to Appendix B.4 for the details on FL algorithms
and GNN models.

6 EXPERIMENTS
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Figure 4. Tox21: test score during sweeping
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Figure 5. hERG: test score during sweeping
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Category Dataset # Tasks Task Type # Compounds Average # of Nodes Average # of Edges Rec - Metric

Quantum Mechanics QM9 (Gaulton et al., 2012) 12 Regression 133885 8.80 27.60 MAE

Physical Chemistry
ESOL (Delaney, 2004) 1 Regression 1128 13.29 40.65 RMSE

FreeSolv(Mobley & Guthrie, 2014) 1 Regression 642 8.72 25.60 RMSE
Lipophilicity (Gaulton et al., 2012) 1 Regression 4200 27.04 86.04 RMSE

Biophysics hERG(Gaulton et al., 2016; Kim et al., 2021) 1 Regression 10572 29.39 94.09 RMSE
BACE (Subramanian et al., 2016) 1 Classification 1513 34.09 36.89 ROC-AUC

Physiology

BBBP (Martins et al., 2012) 1 Classification 2039 24.03 25.94 ROC-AUC
SIDER (Kuhn et al., 2016) 27 Classification 1427 33.64 35.36 ROC-AUC

ClinTox (Gayvert et al., 2016) 2 Classification 1478 26.13 27.86 ROC-AUC
Tox21 (tox, 2017) 12 Classification 7831 18.51 25.94 ROC-AUC

Table 1. Summary of Molecular Machine Learning Datasets

Table 2. Classification results (higher is better)
Dataset Non-I.I.D. GNN Federated Performance MoleculeNet Score on Score on
(samples) Partition Method Model Optimizer Metric Results Centralized Training Federated Training

SIDER LDA GCN
FedAvg ROC-AUC 0.638

0.6476 0.6266 (↓ 0.0210)
with α = 0.2 GAT 0.6639 0.6591 (↓ 0.0048)

(1427) 4 clients GraphSAGE 0.6669 0.6700 (↑ 0.0031)

BACE LDA GCN
FedAvg ROC-AUC 0.806

0.7657 0.6594 (↓ 0.1063)
with α = 0.5 GAT 0.9221 0.7714 (↓ 0.1507)

(1513) 4 clients GraphSAGE 0.9266 0.8604 (↓ 0.0662)

Clintox LDA GCN
FedAvg ROC-AUC 0.832

0.8914 0.8784 (↓ 0.0130)
with α = 0.5 GAT 0.9573 0.9129 (↓ 0.0444)

(1478) 4 clients GraphSAGE 0.9716 0.9246 (↓ 0.0470)

BBBP LDA GCN
FedAvg ROC-AUC 0.690

0.8705 0.7629 (↓ 0.1076)
with α = 2 GAT 0.8824 0.8746 (↓ 0.0078)

(2039) 4 clients GraphSAGE 0.8930 0.8935 (↑ 0.0005)

Tox21 LDA GCN
FedAvg ROC-AUC 0.829

0.7800 0.7128 (↓ 0.0672)
with α = 3 GAT 0.8144 0.7186 (↓ 0.0958)

(7831) 8 clients GraphSAGE 0.8317 0.7801 (↓ 0.0516)

*Note: to reproduce the result, please use the same random seeds we set in the library.

Table 3. Regression results (lower is better)

Dataset Non-I.I.D. GNN Federated Performance MoleculeNet Score for Score for
Partition Method Model Optimizer Metric Result Centralized Training Federated Training

FreeSolv LDA GCN
FedAvg RMSE 1.40 ± 0.16

1.5787 2.7470 (↑ 1.1683)
with α = 0.5 GAT 1.2175 1.3130 (↑ 0.0925)

(642) 4 clients GraphSAGE 1.3630 1.6410 (↑ 0.2780)

ESOL LDA GCN
FedAvg RMSE 0.97 ± 0.01

1.0190 1.4350 (↑ 0.4160)
with α = 2 GAT 0.9358 0.9643 (↑ 0.4382)

(1128) 4 clients GraphSAGE 0.8890 1.1860 (↑ 0.2970)

Lipo LDA GCN
FedAvg RMSE 0.655 ± 0.036

0.8518 1.1460 (↑ 0.2942)
with α = 2 GAT 0.7465 0.8537 (↑ 0.2575)

(4200) 8 clients GraphSAGE 0.7078 0.7788 (↑ 0.0710)

hERG LDA GCN
FedAvg RMSE -

0.7257 0.7944 (↑ 0.0687)
with α = 3 GAT 0.6271 0.7322 (↑ 0.1051)

(10572) 8 clients GraphSAGE 0.7132 0.7265 (↑ 0.0133)

QM9 LDA GCN
FedAvg MAE 2.35

14.78 21.075 (↑ 6.295)
with α = 3 GAT 12.44 23.173 (↑ 10.733)

(133885) 8 clients GraphSAGE 13.06 19.167 (↑ 6.107)

*Note: to reproduce the result, please use the same random seeds we set in the library.

Implementation and Hyper-parameters. Experiments
were conducted on a GPU server equipped with 8 NVIDIA
Quadro RTX 5000 (16GB GPU memory). We built the
benchmark with FedAvg algorithm for three GNN models

on various MoleculeNet datasets with different scales of
sample numbers. The hyper-parameters used for the experi-
ments are listed in the Appendix C.
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Table 4. Training time with FedAvg on GNNs (Hardware: 8 x NVIDIA Quadro RTX 5000 GPU (16GB/GPU); RAM: 512G; CPU: Intel
Xeon Gold 5220R 2.20GHz).

SIDER BACE Clintox BBBP Tox21 FreeSolv ESOL Lipo hERG QM9

Wall-clock Time
GCN 5m 58s 4m 57s 4m 40s 4m 13s 15m 3s 4m 12s 5m 25s 16m 14s 35m 30s 6h 48m
GAT 8m 48s 5m 27s 7m 37s 5m 28s 25m 49s 6m 24s 8m 36s 25m 28s 58m 14s 9h 21m

GraphSAGE 2m 7s 3m 58s 4m 42s 3m 26s 14m 31s 5m 53s 6m 54s 15m 28s 32m 57s 5h 33m

Average FLOP
GCN 697.3K 605.1K 466.2K 427.2K 345.8K 142.6K 231.6K 480.6K 516.6K 153.9K
GAT 703.4K 612.1K 470.2K 431K 347.8K 142.5K 232.6K 485K 521.3K 154.3K

GraphSAGE 846K 758.6K 1.1M 980K 760.6K 326.9K 531.1K 1.5M 1.184M 338.2K

Parameters
GCN 15.1K 13.5K 13.6K 13.5K 14.2K 13.5K 13.5K 13.5K 13.5K 14.2K
GAT 20.2K 18.5K 18.6K 18.5K 19.2K 18.5K 18.5K 18.5K 18.5K 19.2K

GraphSAGE 10.6K 8.9K 18.2K 18.1K 18.8K 18.1K 18.1K 269K 18.1K 18.8K

*Note that we use the distributed training paradigm where each client’s local training uses one GPU. Please refer our code for details.

6.1 Result of Model Accuracy on Non-I.I.D.
Partitioning

We run experiments on both classification tasks and regres-
sion tasks. Hyper-parameters are tuned (sweeping) by grid
search (see Section D for the search space). Figures 4 and 5
use GraphSage on Tox21 and hERG as examples to show
the test score curve during sweeping. We maintain such in-
termediate results for all datasets in our source code. After
hyper-parameter tuning, we report all results in Table 2 and
Table 3. For each result, the optimal hyper-parameters can
be found in the Appendix C.

There are multiple takeaways from these results:

1. When graph datasets are small, FL accuracy is on par
with (or even better than) centralized learning.

2. But when dataset sizes grow, FL accuracy becomes
worse than the centralized approach. In larger datasets,
the non-I.I.D. nature of graphs leads to an accuracy
drop.

3. The dynamics of training GNNs in a federated setting
are different from training federated vision or language
models. Our findings show that the best model in
the centralized setting may not necessarily be the best
model in the non-I.I.D. federated setting. Interestingly,
we find that GAT suffers the most considerable perfor-
mance compromise on 5 out of 9 datasets. This may
be due to the sensibility of the attention calculation on
the non-I.I.D. settings.

Hence, additional research is needed to understand the nu-
ances of training GNNs in a federated setting and bridge
this gap.

6.2 System Performance Analysis

We also present system performance analysis when using
Message Passing Interface (MPI) as the communication

backend. The results are summarized in Table 4. Even on
large datasets, Federated training can be completed under
1 hour using only 4 GPUs, except the QM9 dataset, which
requires hours to finish training. FedGraphNN thus pro-
vides an efficient mapping of algorithms to the underlying
resources, thereby making it attractive for deployment.

The training time using Remote Procedure Call (RPC) is
also evaluated. Its evaluation result is similar to that of using
MPI. More details can be found in our source code. Note
that RPC is useful for realistic deployment when GPU/CPU-
based edge devices can only be accessed via public IP ad-
dresses due to locating in different data centers. We will
provide detailed test results in such a scenario in our future
work.

7 FUTURE WORKS AND CONCLUSION

Here we highlight some future research directions for con-
sideration:

1. Supporting more graph datasets and GNN models for
diverse applications; 2. Optimizing the system to accelerate
the training speed for large-scale graph datasets; 3. Propos-
ing advanced FL algorithms or GNN models to mitigate the
accuracy gap on datasets with inherent non-I.I.D.ness; 4.
Real-world graph data often has limited labels. However,
existing FL algorithms are mainly for supervised learning.
Exploring semi-supervised or self-supervised learning meth-
ods is essential for realistic GNN-based FL applications.

In this paper, we design a federated learning (FL) system
and benchmark for federated graph neural networks (GNN),
named FedGraphNN. FedGraphNN includes implemen-
tations of baseline datasets, models, and federated learning
algorithms. Our system performance analysis shows that
GNN-based FL research is affordable to most research labs.
We hope that FedGraphNN can serve as an easy-to-follow
research platform for researchers to explore vital problems
at the intersection of federated learning and graph neural
networks.
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A MORE DETAILS OF SYSTEM DESIGN

To address these deployment challenges, we plan to develop FedML Client SDK, which has three key modules, Data
Collector and Manager, Training Manager, and Model Serving, as shown in Figure 2. In essence, the
three modules inside FedML Client SDK builds up a pipeline that manages a model’s life cycle, from federated training
to personalized model serving (inference). Unifying three modules of a pipeline into a single SDK can simplify the
system design. Any subsystem in an institute can integrate FedML Client SDK with a host process, which can be the
backend service or desktop application. We can create multiple replicas on multiple servers in the institute. More specially,
Data Collector and Manager is a distributed computing system that can collect scattered datasets or features from
multiple servers to Training Manager. Such collection can also keep the raw data in the original server with RPCs
(remote procedure call), which can only access the data during training. After obtaining all necessary datasets for federated
training, Training Manager will start federated training using algorithms supported by FedML-API. Once training
has been completed, Model Serving can request the trained model to deploy for inference. Under this SDK abstraction,
we plan to address the challenges mentioned above (1) and (2) within the Data Collector and Manager. As for
challenge (3), we plan to make FedML Client SDK compatible with any operating systems (Linux, Android, iOS)
with a cross-platform abstraction interface design. Overall, we hope FedML Client SDK could be a lightweight and
easy-to-use SDK for federated learning among diverse cross-silo institutes.

B BENCHMARK DETAILS

B.1 Molecular Dataset Details

Table 1 summarizes the necessary information of benchmark datasets (Wu et al., 2018b). The details of each dataset are
listed below:

Molecular Classification Datasets

• BBBP (Martins et al., 2012) involves records of whether a compound carries the permeability property of penetrating
the blood-brain barrier.

• SIDER (Kuhn et al., 2016), or Side Effect Resource, dataset consists of marketed drugs with their adverse drug
reactions. The available

• ClinTox (Gayvert et al., 2016) includes qualitative data of drugs both approved by the FDA and rejected due to the
toxicity shown during clinical trials.

• BACE (Subramanian et al., 2016) is collected for recording compounds which could act as the inhibitors of human
β-secretase 1 (BACE-1) in the past few years.

• Tox21(tox, 2017) is a dataset which records the toxicity of compounds.

Molecular Regression Datasets

• QM9 (Ramakrishnan et al., 2014) is a subset of GDB-13, which records the computed atomization energies of stable
and synthetically accessible organic molecules, such as HOMO/LUMO, atomization energy, etc. It contains various
molecular structures such as triple bonds, cycles, amide, and epoxy.

• hERG (Gaulton et al., 2017; Kim et al., 2021) is a dataset that records the gene (KCNH2) that codes for a protein
known as Kv11.1 responsible for its contribution to the electrical activity of the heart to help the coordination of the
heart’s beating.

• ESOL (Delaney, 2004) is a small dataset documenting the water solubility(log solubility in mols per litre) for common
organic small molecules.

• Lipophilicity (Gaulton et al., 2012) which records the experimental results of octanol/water distribution coeffi-
cient for compounds.

• FreeSolv (Mobley & Guthrie, 2014) contains the experimental results of hydration free energy of small molecules
in water.
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Dataset Splitting. We apply random splitting as advised in (Wu et al., 2018b). Dataset partition is 80% training, 10%
validation, and 10% test. We plan to support the scaffold splitting (Bemis & Murcko, 1996) specifically for molecular
machine learning datasets as future work.

B.2 Feature Extraction Procedure for Molecules

The feature extraction is in two steps:

1. Atom-level feature extraction and Molecule object construction using RDKit (Landrum, 2006).

2. Constructing graphs from molecule onbjects using NetworkX (Hagberg et al., 2008).

Atom features, shown in Table 5, are the atom features we used exactly same as in (Rong et al., 2020a).

Features Size Description

atom type 100 Representation of atom (e.g., C, N, O), by its atomic number
formal charge 5 An integer electronic charge assigned to atom
number of bonds 6 Number of bonds the atom is involved in
chirality 5 Number of bonded hydrogen atoms
number of H 5 Number of bonded hydrogen atoms
atomic mass 1 Mass of the atom, divided by 100
aromaticity 1 Whether this atom is part of an aromatic system
hybridization 5 SP, SP2, SP3, SP3D, or SP3D2

Table 5. Atom features

B.3 Non-I.I.D. Partition

The alpha value for latent Dirichlet allocation (LDA) in each non-IID graph dataset can be found in Table 2 and 3. The data
distribution for each dataset is illustrated in Figure 6.

B.4 Details of Supported Models and Algorithms

Graph Neural Network Architectures

• Graph Convolutional Networks (Kipf & Welling, 2016) is a GNN model which is a 1st order approximation to
spectral GNN models. (Markowitz et al., 2021)

• GraphSAGE (Hamilton et al., 2017) is a general inductive GNN framework capable of generating node-level repre-
sentations for unseen data.

• Graph Attention Networks (Veličković et al., 2018) is the first attention-based GNN model. Attention is computed in
a message-passing fashion.

Federated Learning Algorithms

• Federated Averaging (FedAvg). FedAvg (McMahan et al., 2017) is a standard federated learning algorithm that is
normally used as a baseline for advanced algorithm comparison. Each worker trains its local model for several epochs,
then updates its local model to the server. The server aggregates the uploaded client models into a global model by
weighted coordinate-wise averaging (the weights are determined by the number of data points on each worker locally),
and then synchronizes the global model back to all workers.

Vertical Federated Learning (VFL). VFL or feature-partitioned FL (Yang et al., 2019) is applicable to the cases
where all participating parties share the same sample space but differ in the feature space. VFL is the process of
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(a) hERG (#clients: 4, alpha: 3) (b) ESOL (#clients: 4, alpha: 2) (c) FreeSolv (#clients: 4, alpha: 0.5)

(d) BACE (#clients: 4, alpha: 0.5) (e) QM9 (#clients: 8, alpha: 3) (f) Clintox (#clients: 4, alpha: 0.5)

(g) PCBA (#clients: 8, alpha: 3) (h) Tox21 (#clients: 8, alpha: 3) (i) BBBP (#clients: 4, alpha: 2)

(j) SIDER (#clients: 4, alpha: 0.2) (k) LIPO (#clients: 8, alpha: 2)

Figure 6. Unbalanced Sample Distribution (Non-I.I.D.) for Molecular Datasets

aggregating different features and computing the training loss and gradients in a privacy-preserving manner to build a
model with data from all parties collaboratively.

Split Learning. Split learning is computing and memory-efficient variant of FL introduced in (Gupta & Raskar, 2018;
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Vepakomma et al., 2018) where the model is split at a layer and the parts of the model preceding and succeeding this
layer are shared across the worker and server, respectively. Only the activations and gradients from a single layer are
communicated in split learning, as against that the weights of the entire model are communicated in federated learning.

C HYPER-PARAMETERS

For each task, we utilize grid search to find the best results. Table 6 & 7 list all the hyper-parameters ranges used in our
experiments. All hyper-parameter tuning is run on a single GPU. The best hyperparameters for each dataset and model
are listed in Table 8,9,10, & 11 For molecule tasks ,batch-size is kept fixed since the molecule-level task requires us to
have mini-batch is equal to 1. Also, number of GNN layers were fixed to 2 because having too many GNN layers result in
over-smoothing phenomenon as shown in (Li et al., 2018). For all experiments, we used Adam optimizer.

Table 6. Hyper-parameter Range for Centralized Training

hyper-parameter Description Range

learning rate Rate of speed at which the model learns. [0.00015, 0.0015, 0.015, 0.15]
dropout rate Dropout ratio [0.2, 0.3, 0.5, 0.6]
node embedding dimension Dimensionality of the node embedding [16, 32, 64, 128, 256]
hidden layer dimension Hidden layer dimensionality [16, 32, 64, 128, 256]
readout embedding dimension Dimensionality of the readout embedding [16, 32, 64, 128256]
graph embedding dimension Dimensionality of the graph embedding [16, 32, 64, 128, 256]
attention heads Number of attention heads required for GAT 1-7
alpha LeakyRELU parameter used in GAT model 0.2

Table 7. Hyper-parameter Range for Federated Learning

hyper-parameter Description Range

learning rate Rate of speed at which the model learns. [0.00015, 0.0015, 0.015, 0.15]
dropout rate Dropout ratio [0.3, 0.5, 0.6]
node embedding dimension Dimensionality of the node embedding 64
hidden layer dimension Hidden layer dimensionality 64
readout embedding dimension Dimensionality of the readout embedding 64
graph embedding dimension Dimensionality of the graph embedding 64
attention heads Number of attention heads required for GAT 1-7
alpha LeakyRELU parameter used in GAT model 0.2
rounds Number of federating learning rounds [10, 50, 100]
epoch Epoch of clients 1
number of clients Number of users in a federated learning round 4-10

D MORE EXPERIMENTAL DETAILS

The hyper-parameters reported in Section C are based on the hyper-parameter sweeping (grid search). We further provide
the curve of test score (accuracy) during training for each dataset with a specific model. We hope these visualized training
results can be a useful reference for future research exploration.
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Table 8. Hyperparameters for Molecular Classification Task
Dataset Score & Parameters GCN GAT GraphSAGE

BBBP

ROC-AUC Score 0.8705 0.8824 0.8930
learning rate 0.0015 0.015 0.01
dropout rate 0.2 0.5 0.2

node embedding dimension 64 64 64
hidden layer dimension 64 64 64

readout embedding dimension 64 64 64
graph embedding dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None

BACE

ROC-AUC Score 0.9221 0.7657 0.9266
learning rate 0.0015 0.001 0.0015
dropout rate 0.3 0.3 0.3

node embedding dimension 64 64 16
hidden layer dimension 64 64 64

readout embedding dimension 64 64 64
graph embedding dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None

Tox21

ROC-AUC Score 0.7800 0.8144 0.8317
learning rate 0.0015 0.00015 0.00015
dropout rate 0.4 0.3 0.3

node embedding dimension 64 128 256
hidden layer dimension 64 64 128

readout embedding dimension 64 128 256
graph embedding dimension 64 64 128

attention heads None 2 None
alpha None 0.2 None

SIDER

ROC-AUC Score 0.6476 0.6639 0.6669
learning rate 0.0015 0.0015 0.0015
dropout rate 0.3 0.3 0.6

node embedding dimension 64 64 16
hidden layer dimension 64 64 64

readout embedding dimension 64 64 64
graph embedding dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None

ClinTox

ROC-AUC Score 0.8914 0.9573 0.9716
learning rate 0.0015 0.0015 0.0015
dropout rate 0.3 0.3 0.3

node embedding dimension 64 64 64
hidden layer dimension 64 64 64

readout embedding dimension 64 64 64
graph embedding dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None
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Table 9. Hyperparameters for Federated Molecular Classification Task
Dataset Score & Parameters GCN + FedAvg GAT + FedAvg GraphSAGE + FedAvg

BBBP

ROC-AUC Score 0.7629 0.8746 0.8935
number of clients 4 4 4

learning rate 0.0015 0.0015 0.015
dropout rate 0.3 0.3 0.6

Node Embedding Dimension 64 64 64
Hidden Layer Dimension 64 64 64

Readout Embedding Dimension 64 64 64
Graph Embedding Dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None

BACE

ROC-AUC Score 0.6594 0.7714 0.8604
Number of Clients 4 4 4

Learning Rate 0.0015 0.0015 0.0015
Dropout Rate 0.5 0.3 0.5

Node Embedding Dimension 64 64 16
Hidden Layer Dimension 64 64 64

Readout Embedding Dimension 64 64 64
Graph Embedding Dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None

Tox21

ROC-AUC Score 0.7128 0.7171 0.7801
Number of Clients 4 4 4

Learning Rate 0.0015 0.0015 0.00015
Dropout Rate 0.6 0.3 0.3

Node Embedding Dimension 64 64 64
Hidden Layer Dimension 64 64 64

Readout Embedding Dimension 64 64 64
Graph Embedding Dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None

SIDER

ROC-AUC Score 0.6266 0.6591 0.67
Number of Clients 4 4 4

Learning Rate 0.0015 0.0015 0.0015
Dropout Rate 0.6 0.3 0.6

Node Embedding Dimension 64 64 16
Hidden Layer Dimension 64 64 64

Readout Embedding Dimension 64 64 64
Graph Embedding Dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None

ClinTox

ROC-AUC Score 0.8784 0.9160 0.9246
Number of Clients 4 4 4

Learning Rate 0.0015 0.0015 0.015
Dropout Rate 0.5 0.6 0.3

Node Embedding Dimension 64 64 64
Hidden Layer Dimension 64 64 64

Readout Embedding Dimension 64 64 64
Graph Embedding Dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None
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Table 10. Hyperparameters for Molecular Regression Task
Dataset Score &Parameters GCN GAT GraphSAGE

Freesolv

RMSE Score 0.8705 0.8824 0.8930
learning rate 0.0015 0.015 0.01
dropout rate 0.2 0.5 0.2

node embedding dimension 64 64 64
hidden layer dimension 64 64 64

readout embedding dimension 64 64 64
graph embedding dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None

ESOL

RMSE Score 0.8705 0.8824 0.8930
learning rate 0.0015 0.015 0.01
dropout rate 0.2 0.5 0.2

node embedding dimension 64 64 64
hidden layer dimension 64 64 64

readout embedding dimension 64 64 64
graph embedding dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None

Lipophilicity

RMSE Score 0.8521 0.7415 0.7078
learning rate 0.0015 0.001 0.001
dropout rate 0.3 0.3 0.3

node embedding dimension 128 128 128
hidden layer dimension 64 64 64

readout embedding dimension 128 128 128
graph embedding dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None

hERG

RMSE Score 0.7257 0.6271 0.7132
learning rate 0.001 0.001 0.005
dropout rate 0.3 0.5 0.3

node embedding dimension 64 64 64
hidden layer dimension 64 64 64

readout embedding dimension 64 64 64
graph embedding dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None

QM9

RMSE Score 14.78 12.44 13.06
learning rate 0.0015 0.015 0.01
dropout rate 0.2 0.5 0.2

node embedding dimension 64 64 64
hidden layer dimension 64 64 64

readout embedding dimension 64 64 64
graph embedding dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None
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Table 11. Hyperparameters for Federated Molecular Regression Task
Dataset Parameters GCN + FedAvg GAT + FedAvg GraphSAGE + FedAvg

FreeSolv

RMSE Score 2.747 3.108 1.641
Number of Clients 4 8 4

learning rate 0.0015 0.00015 0.015
dropout rate 0.6 0.5 0.6

node embedding dimension 64 64 64
hidden layer dimension 64 64 64

readout embedding dimension 64 64 64
graph embedding dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None

ESOL

RMSE Score 1.435 1.028 1.185
Number of Clients 4 4 4

learning rate 0.0015 0.0015 0.0015
dropout rate 0.5 0.3 0.3

node embedding dimension 64 256 64
hidden layer dimension 64 64 64

readout embedding dimension 64 64 64
graph embedding dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None

Lipophilicity

RMSE Score 1.146 1.004 0.7788
Number of Clients 4 4 4

learning rate 0.0015 0.0015 0.0015
dropout rate 0.3 0.3 0.3

node embedding dimension 64 64 256
hidden layer dimension 64 64 256

readout embedding dimension 64 64 256
graph embedding dimension 64 64 256

attention heads None 2 None
alpha None 0.2 None

hERG

RMSE Score 0.7944 0.7322 0.7265
Number of Clients 8 8 8

learning rate 0.0015 0.0015 0.0015
dropout rate 0.3 0.3 0.6

node embedding dimension 64 64 64
hidden layer dimension 64 64 64

readout embedding dimension 64 64 64
graph embedding dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None

QM9

MAE Score 21.075 23.173 19.167
Number of Clients 8 8 8

learning rate 0.0015 0.00015 0.15
dropout rate 0.2 0.5 0.3

node embedding dimension 64 256 64
hidden layer dimension 64 128 64

readout embedding dimension 64 256 64
graph embedding dimension 64 64 64

attention heads None 2 None
alpha None 0.2 None


