
IGNNITION: A FRAMEWORK FOR FAST PROTOTYPING
OF GRAPH NEURAL NETWORKS

David Pujol-Perich 1 José Suárez-Varela 1 Miquel Ferriol-Galmés 1 Shihan Xiao 2 Bo Wu 2

Albert Cabellos-Aparicio 1 Pere Barlet-Ros 1

ABSTRACT
Recent years have seen the vast potential of Graph Neural Networks (GNN) in many fields where data is structured
as graphs (e.g., chemistry, logistics). However, implementing a GNN prototype is still a cumbersome task
that requires strong skills in neural network programming. This poses an important barrier to researchers and
practitioners that want to apply GNN to their specific problems but do not have the needed Machine Learning
expertise. In this paper, we present IGNNITION, a novel open-source framework for fast prototyping of GNNs.
This framework is built on top of TensorFlow, and offers an intuitive high-level abstraction that allows the user to
define its GNN model via a YAML file, being completely oblivious to the tensor-wise operations made internally
by the model. At the same time, IGNNITION offers great flexibility to build any GNN-based architecture. To
showcase its versatility, we implement two state-of-the-art GNN models applied to the field of computer networks,
which differ considerably from well-known standard GNN architectures. Our evaluation results show that the
GNNs produced by IGNNITION are equivalent in performance to implementations directly coded in TensorFlow.

1 INTRODUCTION

Graph Neural Networks (GNN) (Scarselli et al., 2008) have
recently become a hot topic among the Machine Learning
(ML) community. The main novelty behind GNNs is their
unique ability to learn and generalize over graph-structured
information. This has enabled the development of many
GNN-based applications in different fields where data is fun-
damentally represented as graphs – E.g., chemistry (Gilmer
et al., 2017; You et al., 2018), physics (Battaglia et al., 2016;
Farrell et al., 2018), biology (Zitnik et al., 2018; Gainza
et al., 2020), information science (Ying et al., 2018).

Nowadays, designing and implementing a GNN-based solu-
tion involves dealing with complex mathematical formula-
tions and programming with tensor-oriented ML libraries,
such as TensorFlow (Abadi et al., 2016) or PyTorch (Paszke
et al., 2019). At the same time, applying GNN to spe-
cific problems (e.g., computer networks, chemistry) often
requires the design of ad-hoc GNN architectures adapted
to the data under consideration – E.g., heterogeneous
graphs (Rusek et al., 2019; Geyer and Carle, 2018; Badia-

1Barcelona Neural Networking Center, Universitat Politècnica
de Catalunya, Spain 2Network Technology Lab., Huawei Tech-
nologies Co.,Ltd.. Correspondence to: David Pujol-Perich
<david.pujol.perich@upc.edu>.

Proceedings of the First MLSys Workshop on Graph Neural Net-
works and Systems (GNNSys’21), San Jose, CA, USA, 2021. Copy-
right 2021 by the author(s).

Sampera et al., 2019). This represents a critical entry barrier
for researchers and practitioners from different fields that
could benefit from the use of GNN, but lack the necessary
ML expertise to implement models tailored to their needs.

In this paper, we present IGNNITION, a TensorFlow-based
framework for fast prototyping of GNNs. This frame-
work is open source1, and mainly targets users with little
background on neural network programming. With IGN-
NITION, users can easily design their own GNN models
– including complex non-standard architectures – via an in-
tuitive, human-readable YAML file. Based on this input, the
framework automatically generates an efficient implementa-
tion of the GNN in TensorFlow, making the user completely
oblivious to the underlying tensor-wise operations.

To achieve this, we propose a high-level abstraction called
the Multi-Stage Message Passing graph (MSMP graph).
This novel abstraction covers a broad definition of GNN,
which provides great flexibility to design variants and com-
binations of state-of-the-art GNN architectures – E.g., Mes-
sage Passing Neural Networks (Gilmer et al., 2017), Graph
Convolutional Networks (Kipf and Welling, 2017), Gated
Neural Networks (Li et al., 2016), Graph Attention Net-
works (Veličković et al., 2017), Graph LSTM (Liang et al.,
2016), Typed Graph Networks (Prates et al., 2019). Like-
wise, MSMP graphs enable to hide the complex mathemati-
cal formulation behind the implementation of a GNN.

1Available at: https://ignnition.net



IGNNITION: A framework for fast prototyping of Graph Neural Networks

In contrast, existing ML libraries with support for GNN
(You et al., 2020; Battaglia et al., 2018; Fey and Lenssen,
2019; Wang et al., 2019; Grattarola and Alippi, 2020) are
either considerably more complex or lack sufficient flexibil-
ity to implement non-standard GNN models. For instance,
GraphGym (You et al., 2020) does not support complex
message passing strategies used in well-known GNN mod-
els – e.g., multi-step message passing (Rusek et al., 2019;
Geyer and Carle, 2018); while other approaches, such as
DGL (Wang et al., 2019) or Graph Nets (Battaglia et al.,
2018), still require a high degree of expertise in neural net-
work programming compared to IGNNITION.

More in detail, the main features of IGNNITION are:

• High-level abstraction: It introduces a human-
readable interface that abstracts away the mathematical
formulation behind GNN implementations.

• Flexibility of design: Support for any type of GNN
and message passing scheme via the novel MSMP
graph abstraction.

• High performance: It produces efficient GNN imple-
mentations, equivalent to native code, as later shown
in the evaluation.

• Easy debugging: It incorporates interactive debug-
ging visualizations and advanced error-checking mech-
anisms to help users troubleshoot their GNN models.

With IGNNITION, users with little experience on neural
network programming (e.g., TensorFlow, PyTorch) can re-
duce significantly the time needed to achieve functional
GNN implementations adapted to their problems. To show
the versatility of this framework, in this paper we use IGN-
NITION to implement two state-of-the-art GNN models
applied to computer networks. As discussed below, these
models include several particularities that differ consider-
ably from standard GNN architectures.

2 THE MULTI-STAGE MESSAGE PASSING
GRAPH ABSTRACTION

This section introduces a novel high-level abstraction we
called the Multi-Stage Message Passing graph (hereafter
MSMP graph).

The MSMP graph abstraction provides an interface with
a flexible modular design, offering support for any vari-
ant of state-of-the-art GNN architectures as well as custom
combinations of individual components of them (e.g., mes-
sage, aggregation, update, loss, normalization functions).
Hereafter, we refer to the message-passing phase as the
pipeline of message-aggregation-update layers that shape a
GNN (Battaglia et al., 2018).

e1

e3

e2

e1

e3

e2

e1

e3

e2

Stage 1 Stage 2

Gr
ap

h 
en

tit
ie

s

Message-passing stages

(a) MSMP Example

links links links

Stage 1 Stage 2

Gr
ap

h 
en

tit
ie

s

Message-passing stages

pathspaths paths

(b) RouteNet’s MSMP

Figure 1: MSMP representations – Generic example and
RouteNet (Rusek et al., 2019)

One main novelty of this abstraction is that it offers support
for non-standard message-passing schemes divided in mul-
tiple stages and including different element types – e.g., hy-
pergraphs (Feng et al., 2019), heterogeneous graphs (Rusek
et al., 2019). This enables to implement a wide spectrum
of GNN proposals applied to different areas of knowl-
edge (Zhou et al., 2018).

Particularly, with the MSMP graph, a GNN can be intu-
itively defined by a set of graph entities and how they relate
to each other, which eventually describes a message-passing
iteration of the GNN. Fig. 1a illustrates an example of a
GNN with three different entity types (e1, e2 and e3). In
this MSMP graph, we can observe two differentiated stages
in the message-passing phase. In the first stage, elements of
entity e1 and e2 share their hidden states with their neigh-
bors of entity e3 according to the connections of the input
graph. Then, in the second stage, e3 elements share their
states with their linked elements of type e1 and e2. This
process is then repeated a number of iterations T or until a
convergence criterion is satisfied (Scarselli et al., 2008).

As a result, IGNNITION supports any GNN that can be rep-
resented as an MSMP graph. This broadly includes the main
state-of-the-art GNN architectures and many possible vari-
ants, such as Graph Attention Networks (Veličković et al.,
2017), Graph Convolutional Networks (Kipf and Welling,
2017), Gated Neural Networks (Li et al., 2016), Graph
LSTM (Liang et al., 2016), Typed Graph Networks (Prates
et al., 2019), Hypergraph Neural Networks (Feng et al.,
2019), and many others.

3 FRAMEWORK IMPLEMENTATION

This section describes the four main modules that shape
IGNNITION. These are: the Model Description Interface
(Sec. 3.1), the Dataset Interface (Sec. 3.2), the Core Engine
(Sec. 3.3), and the Debugging Assistant (sec. 3.4).

3.1 Model Description Interface

The first step to build a GNN with IGNNITION is to de-
scribe the model using the MSMP graph abstraction pre-



IGNNITION: A framework for fast prototyping of Graph Neural Networks

entities:
- name: path
state_dimension: 32
initial_state:
- type: build_state

input: [traffic]

Figure 2: Entity definition in the YAML model description.

sented in Section 2. This can be done by filling a small
YAML file. The description should include all the enti-
ties involved and the relationships between them. Thus, in
IGNNITION the GNN model definition remains completely
decoupled from the input dataset and some other implemen-
tation details. More specifically, this YAML file should
contain the following information:

3.1.1 Entities definition

First of all, the user defines the different entities to consider
in the problem scenario – and consequently in the corre-
sponding MSMP graph. Particularly, the user should first
indicate the entity names, the size of the state vectors, and
how to initialize these state vectors. For instance, in the
context of computer networks, an entity typically represents
a set of network components, which can be physical (e.g.,
routers, links), or logical (e.g., paths, virtual network func-
tions). As an example, Figure 2 shows the definition of
an entity (path) in the YAML model description file. The
state initialization is defined by a flexible pipeline of opera-
tions that supports complex initialization methods used in
state-of-the-art models (e.g., NN-based feature embedding).
Note that these operations reference features through unique
names (e.g., “traffic”) that are then used to identify them in
the input dataset – as shown later in Sec. 3.2. Optionally, a
normalization function can be applied to features before they
are introduced into the initial state vectors (e.g., “z-score”).

3.1.2 Message passing phase

Then, the user needs to complete the MSMP graph by defin-
ing the message-passing operations in the GNN model – i.e.,
the relations between entities. To do so, it is required to
describe a single message-passing iteration, which can be
divided in turn in several stages. In each message-passing
stage, a set of entities share their hidden states with some
other entities. For example, in the MSMP graph previously
presented in Figure 1a the message passing is divided in two
stages. In the first one, the following message passings are
executed: e1→e3, and e2→e3; while in the second stage
the reverse message passings are performed: e3→e1, and
e3→e2. Once a complete message passing iteration is de-
fined, IGNNITION is able to automatically generate a GNN
model that unrolls this message passing scheme a number
of iterations (T ) defined by the user.

With IGNNITION, users can intuitively define the message

- destination_entity: link
source_entities:

- name: path
message:

- type: direct_assignment

aggregation:
- type: sum

update:
type: neural_network
nn_name: recurrent_1

Figure 3: Example of a message passing definition between
two entities (paths to links) in RouteNet (Rusek et al., 2019).

passing by specifying in the model description file a set of
YAML keywords describing each stage. A full description
with all the available keywords can be found at (BNN Cen-
ter, 2021). To do so, the user must first specify the names
of the source and destination entities. Note that there may
be more than one entity type that sends its states to the des-
tination elements. For instance, in stage #1 of the MSMP
graph in Fig. 1a, e1 and e2 entities send simultaneously
their hidden states to nodes of type e3. The adjacencies
between elements of the source and destination entities are
completely determined by the graphs of the input dataset. Fi-
nally, the user needs to define the message, aggregation and
update functions used in each message passing. To this end,
IGNNITION provides full flexibility to implement these
functions in many different ways (e.g., neural networks,
element-wise multiplications or even direct assignments)
that are often used in state-of-the-art GNN models (Zhou
et al., 2018).

As an illustrative example, Figure 3 shows the definition of
stage #2 in the message passing of RouteNet (Rusek et al.,
2019) – see Fig. 1b. To define the message passing (from
“path” to “link” entities) we first set the general information
of the message passing (source/destination entity names).
Then, we define the message, aggregation and update func-
tions with a few lines of YAML text. To achieve a modular
design, in case of using NNs (e.g., in the update function),
the user can define a name (e.g., “recurrent 1”) that is then
used to describe the NN details in a separate section of the
model description file.

3.1.3 Readout

At this point, the user is asked to define the readout func-
tion. Note that state-of-the-art GNN models often chain
multiple operations to implement the readout (Geyer and
Carle, 2018). Thus, in IGNNITION the readout can be de-
fined via a flexible pipeline of instructions (e.g., pooling,
neural network). Likewise, it can finally produce per-node
or global graph-level outputs.

Particularly, the definition must contain a set of YAML
objects –described in detail in (BNN Center, 2021). For



IGNNITION: A framework for fast prototyping of Graph Neural Networks

- nn_name: readout_model
nn_architecture:
- type: Dense

units: 256
kernel_regularizer: 0.1
activation: selu

- type: Dropout
rate: 0.5

- type: Dense
units: 1

Figure 4: Example of the definition of a neural network.

each operation, the user needs to define the type (e.g., “pool-
ing”, “neural network”) and the names of the input elements.
These can refer to the output of previous operations or to
the final hidden states of a certain entity. Similarly to the
message-passing functions, a name can be used to then
describe separately the NN architecture used for these op-
erations. Likewise, the last operation of the readout must
contain the name of the output label, which is then used to
reference it in the training dataset.

3.1.4 Neural networks definition

Finally, the user must define in a separate section all the neu-
ral networks that were previously referenced (e.g., for the
message, update and readout functions). For this purpose,
IGNNITION offers an interface that maps directly to native
functions of the well-known Keras library (Chollet et al.,
2015). Thus, to define for instance a feed-forward neural
network, the user can specify each layer separately, indi-
cating the layer’s type and any additional Keras parameters
(see Fig. 4). Alternatively, the user can instantiate any other
NN models such as Recurrent Neural Networks (RNN) by
using their respective Keras parameters. To facilitate this
process, a debugging agent (Sec. 3.4) assists users in case
they do not define these NNs correctly.

As we can observe in the examples of this section, with
IGNNITION the user can define a GNN model – via MSMP
graphs – while remaining completely oblivious to the com-
plex tensor-wise operations behind the resulting TensorFlow
implementation produced by this framework.

3.2 Dataset Interface

Another main module of the framework is the Dataset in-
terface. This interface permits to decouple the GNN model
description from the input data. Likewise, it enables to eas-
ily feed the model with datasets in heterogeneous formats.
To achieve this, IGNNITION provides an interface that en-
ables to process datasets with the well-known NetworkX
library (Hagberg et al., 2008). This library already imple-
ments a plethora of functions that automatize the definition
of graphs from datasets, as well as serializing the resulting
graphs to standard formats. Particularly, IGNNITION reads
any dataset serialized by NetworkX in JSON format. Note

// main.py
import ignnition

def main():
model = ignnition.create_model(model_dir=<PATH>)
model.train_and_validate()

Figure 5: Python code to generate and train a GNN model.

that datasets can contain graphs of different sizes and struc-
tures (e.g., data from different networks). In this regard, the
GNN implementations generated by IGNNITION assemble
at runtime the message-passing functions according to the
elements and connections of input graphs.

3.3 Core Engine

This module contains the main logic behind IGNNITION.
To this end, it implements internally the MSMP graph ab-
straction proposed in Section 2.

Once the model has been designed (Sec. 3.1) and the dataset
has been properly formatted (Sec. 3.2), the user can interact
with the Core Engine to execute the framework’s function-
alities – E.g., train and validate a GNN model, make predic-
tions, obtain visual representations of the model (Sec. 3.4).
Note that two API calls are enough to execute any of these
functionalities – as shown in the example of Fig. 5.

As mentioned previously, IGNNITION implements the de-
signed GNN model in TensorFlow. This enables to work in-
ternally with the efficient computational graph generated by
this ML library. As a result, the framework is able to achieve
comparable performance to implementations directly coded
in TensorFlow – as shown later in Section 4.

To create the model implementation, the Core Engine
proceeds in a similar way to traditional compilers, fol-
lowing three main steps to parse the model description
file: (i) lexical analysis, (ii) syntactical analysis and
(iii) semantic analysis. These three steps enable to detect
unexpected structures and trigger numerous error-checking
mechanisms (Sec. 3.4).

After validating all the input information, IGNNITION au-
tomatically generates the GNN model implementation. For
this, it makes use of a generic definition of MSMP graphs
that covers a broad spectrum of particularities introduced by
the user in its model definition.

3.4 Debugging Assistant

One of the biggest challenges when designing NN mod-
els with traditional ML libraries is to find potential bugs
and fix them. Having a clear picture of the resulting GNN
implementation is often a non-trivial and time-consuming
task. For this reason, IGNNITION incorporates an advanced
debugging system that assists users in different ways.



IGNNITION: A framework for fast prototyping of Graph Neural Networks

Figure 6: Debugging visualizations — One Message Pass-
ing (MP) iteration (left), paths to links MP stage (middle),
and readout (right) of RouteNet (Rusek et al., 2019).

First, it automatically produces interactive visual representa-
tions of the internal GNN architecture. To do so, it relies on
a Tensorboard-based system that enriches the visualization
of the model at different levels of granularity. For example,
Figure 6 shows three screenshots obtained after implement-
ing RouteNet (Rusek et al., 2019) with IGNNITION. Par-
ticularly, we can observe the two message-passing stages
of this model (i.e., links to paths and paths to links), and a
zoomed-in visualization of the second stage (paths to links)
with its internal functions (message, aggregation, and up-
date). The image on the right shows the neural network
layers that compose the readout function. Additionally,
numerous advanced error-checking mechanisms are incor-
porated to ensure the correct definition of the model and to
provide guidance to fix potential badly defined fields (e.g.,
wrong NN descriptions, entities definitions, missing features
in datasets).

4 EMPIRICAL EVALUATION

This section presents several paradigmatic use cases where
we leverage IGNNITION to make fast GNN implementa-
tions. In particular, we aim to showcase the flexibility of this
framework to implement complex non-standard GNN mod-
els. We intentionally select two models applied to computer
networks due to their particularly complex message-passing
architectures. Likewise, we compare the performance of
the implementations produced by IGNNITION and their
equivalent implementations in TensorFlow trough two main
metrics: (i) the accuracy achieved by the models after train-
ing, and (ii) the execution cost of both implementations.

4.1 GNN models description

We show below a brief description of the two implemented
models and their main architectural singularities:

4.1.1 RouteNet

RouteNet (Rusek et al., 2019) was proposed as a network
modeling tool that predicts per-path performance metrics
(e.g., delay, jitter) given a network snapshot as input, de-
fined by: a network topology, a routing configuration, and

a traffic matrix. To this end, this GNN architecture con-
siders heterogeneous graphs with two different entity types
(links and paths) and a two-stage message passing scheme
– previously illustrated in the MSMP graph of Fig. 1b.

4.1.2 Graph-Query Neural Network (GQNN)

The GQNN model (Geyer and Carle, 2018) addresses a
different problem: supervised learning of traditional net-
work routing protocols with GNN, such as shortest path
or max-min routing. To this end, this GNN model uses a
novel architecture with two entity types: routers and in-
terfaces, being the latter the several network interfaces of
each router in the network. This model considers a single-
stage message passing scheme where routers and interfaces
share their hidden states. As output, the model determines
whether the interfaces transmit traffic or not (i.e., [0,1]),
which eventually defines the routing configuration of the
network. Another particularity of this model is in the read-
out, which uses an operation pipeline with an element-wise
multiplication and then a NN for the final prediction.

4.2 Evaluation: Accuracy and Cost

To evaluate the performance of such models, we use their
native implementations in TensorFlow as a reference, and
reproduce some of the experiments made in their corre-
sponding papers. Particularly, we use two datasets with
300,000 and 40,000 samples originally used in the evalua-
tions of RouteNet and GQNN respectively. In each case, we
randomly select 80% of the samples for training and 20%
of the samples for evaluation.

To evaluate the accuracy of the models, we train them under
equal conditions. Figure 7a shows the Cumulative Distribu-
tion Function (CDF) of the relative error produced by the
IGNNITION’s implementation of RouteNet and its corre-
sponding native Tensorflow implementation. Figure 7b, sim-
ilarly shows the CDF of the classification accuracy achieved
by the GQNN implementations. As we can observe, in both
experiments IGNNITION implementations achieve equiv-
alent accuracy after being trained with the same samples,
which proves a consistent behavior of this framework across
different GNN architectures.

Likewise, we evaluate the execution cost of both classes of
implementations. Figure 7c depicts the average execution
time per sample during training; while Figure 7d shows
the same results for inference. In line with the previous
results, we observe that the execution cost of IGNNITION
implementations is equivalent to that of the original models
in TensorFlow, both for training and inference. Note that all
these experiments were made in a controlled environment,
using the same computing resources for all the cases.

As a conclusion, we can observe that the resulting imple-



IGNNITION: A framework for fast prototyping of Graph Neural Networks

(a) RouteNet (b) GQNN (c) Training time per sample (d) Inference time per sample

Figure 7: CDF of the accuracy produced by IGNNITION and the original TensorFlow implementations (a and b); Comparison
of the execution cost of both types of implementations, during training and inference (c and d).

mentations of IGNNITION are equivalently accurate and
efficient to native TensorFlow implementations. This re-
veals the capability of this framework to produce efficient
GNN models, while offering substantial time savings for
non-ML experts to implement them. They can just achieve
it by filling the YAML model description file described in
Sec. 3.1. Moreover, users can leverage additional function-
alities such as the visual representations of the debugging
system (Fig. 6) and the advanced error-checking mecha-
nisms to easily fix potential bugs.

5 RELATED WORK

Apart from IGNNITION, some other programming libraries
support the implementation of GNNs. Particularly, two
main types of libraries can be differentiated. On the
one hand, libraries like GraphGym (You et al., 2020) or
Spektral (Grattarola and Alippi, 2020) aim to simplify the
GNN design process. In the case of GraphGym, for in-
stance, through a codeless interface. This approach, how-
ever, comes at the expense of strict assumptions on GNN
architectures, limiting significantly the variety of GNNs that
can be supported. For instance, these solutions do not of-
fer easy support to implement state-of-the-art GNN models
applied to computer networks, such as (Rusek et al., 2019)
or (Badia-Sampera et al., 2019), given their non-standard
message-passing architectures (e.g., various entity types and
multi-stage message passing). On the other hand, libraries
such as Graph Nets (Battaglia et al., 2018), PyTorch Geomet-
ric (Fey and Lenssen, 2019), or DGL (Wang et al., 2019) do
not impose such restrictions. To achieve this, they strongly
rely on generic ML libraries (e.g., TensorFlow, PyTorch) to
implement some critical parts of the model, which consider-

Table 1: Comparison of existing programming libraries with
support for GNN.

Name High-level GNN
abstraction

Support for
non-standard

GNNs

Debugging
assistant

IGNNITION 4 4 4

Graph Nets (Battaglia et al., 2018) 7 4 7

PyTorch Geometric (Fey and Lenssen, 2019) 7 4 7

DGL (Wang et al., 2019) 7 4 7

Spektral (Grattarola and Alippi, 2020) 7 7 7

GraphGym (You et al., 2020) 4 7 7

ably hinders the implementation of GNN models for users
with little experience in neural network programming.

Table 1 summarizes the main differences between IGN-
NITION and the main existing libraries with support for
GNN. With IGNNITION, users can define GNNs using a
high-level abstraction that avoids mathematical formulation
and coding tensor-based operations. More importantly, this
framework puts the spotlight on complex GNN models with
non-standard message-passing architectures, while avoiding
any performance penalty or requiring users to write a single
line of TensorFlow code. To the best of our knowledge, this
is not possible with any other existing library.

6 CONCLUSION

In this paper, we introduced IGNNITION, an open-source
framework based on TensorFlow that enables fast prototyp-
ing of Graph Neural Networks. IGNNITION works over a
novel high-level abstraction called the Multi-Stage Message
Passing graph (MSMP graph), which isolates users from the
complex mathematical formulations and tensor-based oper-
ations used in traditional ML libraries (e.g., TensorFlow).
MSMP graphs are flexible enough to support any state-of-
the-art GNN architecture with complex message passing
strategies. We implemented two state-of-the-art GNN mod-
els applied to computer networks with IGNNITION to show
its versatility. Likewise, we validated that the performance
of the GNNs produced by this framework is equivalent to
that of native TensorFlow implementations.

ACKNOWLEDGEMENT

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme within
the framework of the NGI-POINTER Project funded under
grant agreement No. 871528. This paper reflects only the
authors’ view; the European Commission is not responsible
for any use that may be made of the information it contains.
This work was also supported by the Spanish MINECO
under contract TEC2017-90034-C2-1-R (ALLIANCE) and
the Catalan Institution for Research and Advanced Studies
(ICREA).



IGNNITION: A framework for fast prototyping of Graph Neural Networks

REFERENCES

Abadi, M., et al., 2016. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv
preprint arXiv:1603.04467 .

Badia-Sampera, A., et al., 2019. Towards more realistic
network models based on graph neural networks, in: Pro-
ceedings of the ACM CoNEXT student workshop, pp.
14–16.

Battaglia, P., et al., 2016. Interaction networks for learning
about objects, relations and physics, in: Advances in
neural information processing systems (NIPS), pp. 4502–
4510.

Battaglia, P., et al., 2018. Relational inductive biases,
deep learning, and graph networks. arXiv preprint
arXiv:1806.01261 .

BNN Center, 2021. IGNNITION - Documentation. URL:
https://ignnition.net/doc/.

Chollet, F., et al., 2015. Keras. URL: https://github.
com/fchollet/keras.

Farrell, S., et al., 2018. Novel deep learning methods for
track reconstruction. arXiv preprint arXiv:1810.06111 .

Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y., 2019. Hy-
pergraph neural networks, in: Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 3558–3565.

Fey, M., Lenssen, J.E., 2019. Fast graph representa-
tion learning with pytorch geometric. arXiv preprint
arXiv:1903.02428 .

Gainza, P., et al., 2020. Deciphering interaction fingerprints
from protein molecular surfaces using geometric deep
learning. Nature Methods 17, 184–192.

Geyer, F., Carle, G., 2018. Learning and generating dis-
tributed routing protocols using graph-based deep learn-
ing, in: Proceedings of the ACM SIGCOMM BigDAMA
Workshop, pp. 40–45.

Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl,
G.E., 2017. Neural message passing for quantum chem-
istry, in: Proceedings of the International Conference on
Machine Learning (ICML), pp. 1263–1272.

Grattarola, D., Alippi, C., 2020. Graph neural networks
in tensorflow and keras with spektral. arXiv preprint
arXiv:2006.12138 .

Hagberg, A.A., Schult, D.A., Swart, P.J., 2008. Explor-
ing network structure, dynamics, and function using net-
workx, in: Python in Science Conference, pp. 11 – 15.

Kipf, T.N., Welling, M., 2017. Semi-supervised classifica-
tion with graph convolutional networks, in: Proceedings

of the International Conference on Learning Representa-
tions (ICLR).

Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.S., 2016.
Gated graph sequence neural networks, in: Proceedings
of the International Conference on Learning Representa-
tions (ICLR).

Liang, X., Shen, X., Feng, J., Lin, L., Yan, S., 2016. Se-
mantic object parsing with graph LSTM, in: European
Conference on Computer Vision, Springer. pp. 125–143.

Paszke, A., et al., 2019. Pytorch: An imperative style, high-
performance deep learning library, in: Advances in neural
information processing systems (NIPS), pp. 8026–8037.

Prates, M.O., Avelar, P.H., Lemos, H., Gori, M., Lamb,
L., 2019. Typed graph networks. arXiv preprint
arXiv:1901.07984 .

Rusek, K., et al., 2019. Unveiling the potential of graph
neural networks for network modeling and optimization
in sdn, in: Proceedings of the ACM Symposium on SDN
Research (SOSR), pp. 140–151.

Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Mon-
fardini, G., 2008. The graph neural network model. IEEE
Transactions on Neural Networks 20, 61–80.

Veličković, P., et al., 2017. Graph attention networks. arXiv
preprint arXiv:1710.10903 .

Wang, M., et al., 2019. Deep graph library: A graph-centric,
highly-performant package for graph neural networks.
arXiv preprint arXiv:1909.01315 .

Ying, R., et al., 2018. Graph convolutional neural networks
for web-scale recommender systems, in: Proceedings of
the ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pp. 974–983.

You, J., Liu, B., Ying, Z., Pande, V., Leskovec, J., 2018.
Graph convolutional policy network for goal-directed
molecular graph generation, in: Advances in Neural In-
formation Processing Systems (NIPS), pp. 6410–6421.

You, J., Ying, R., Leskovec, J., 2020. Design space for
graph neural networks, in: NeurIPS.

Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang,
L., Li, C., Sun, M., 2018. Graph neural networks:
A review of methods and applications. arXiv preprint
arXiv:1812.08434 .

Zitnik, M., Agrawal, M., Leskovec, J., 2018. Modeling
polypharmacy side effects with graph convolutional net-
works. Bioinformatics 34, i457–i466.

https://ignnition.net/doc/
https://github.com/fchollet/keras
https://github.com/fchollet/keras

