NETXPLAIN: REAL-TIME EXPLAINABILITY OF
GRAPH NEURAL NETWORKS APPLIED TO COMPUTER NETWORKS

David Pujol-Perich! José Sudrez-Varela! Shihan Xiao> Bo Wu? Albert Cabellos-Aparicio! Pere Barlet-Ros '

ABSTRACT
Recent advancements in Deep Learning (DL) have revolutionized the way we can efficiently tackle complex
optimization problems. However, existing DL-based solutions are often considered as black boxes due to their
high inner complexity. As a result, there is still certain skepticism among the computer network industry about
their practical viability to operate data networks. In this context, explainability techniques have recently emerged
to unveil why DL models make each decision. This paper focuses on Graph Neural Network (GNN) models applied
to computer networks, which have already shown outstanding performance in different network optimization
tasks. We thus present NetXplain, a novel real-time explainability solution that uses a GNN fo interpret the output
produced by another GNN. In the evaluation, we apply the proposed explainability method to RouteNet —a GNN
model that predicts end-to-end performance metrics in computer networks. We show that NetXplain operates
more than 3 orders of magnitude faster than state-of-the-art explainability solutions when applied to networks up
to 24 nodes, which makes this solution compatible with real-time applications. Moreover, it demonstrated strong

generalization capabilities over different network scenarios unseen during training.

1 INTRODUCTION

In recent years, Deep Learning (DL) has revolutionized the
way we can to solve a vast number of problems — e.g., (Sil-
ver et al., 2016; Vinyals et al., 2019) — by finding meaningful
patterns on large amounts of data. One main limitation of
DL-based solutions, however, is that they offer probabilis-
tic performance guarantees, which typically degrade as the
data deviates from the distribution observed during training.
Moreover, due to the high complexity of the internal archi-
tectures of Neural Networks (NN), they are often treated as
black boxes (Meng et al., 2020). This limits the viability of
applying these solutions to non-fault-tolerant systems such
as computer networks, as these are critical infrastructures
where it is essential to deploy fully reliable solutions.

In this context, explainability solutions (Samek et al., 2017;
Bau et al., 2017) have recently emerged as practical tools
to provide human-readable interpretations of complex DL
models. This knowledge enables not only to produce more
mature and reliable DL models, but also to enhance their per-
formance by making ad-hoc adjustments. More specifically,

'Barcelona Neural Networking Center, Universitat Politécnica
de Catalunya, Spain *Network Technology Lab., Huawei Tech-
nologies Co.,Ltd.. Correspondence to: David Pujol-Perich
<david.pujol.perich@upc.edu>.

Proceedings of the First MLSys Workshop on Graph Neural Net-
works and Systems (GNNSys’21), San Jose, CA, USA, 2021. Copy-
right 2021 by the author(s).

these solutions analyze trained DL models from a black-
box perspective —i.e., they only observe their inputs and
outputs — and aim to identify which input elements mainly
determine the model’s output.

At the same time, the last few years have seen the explo-
sion of Graph Neural Networks (GNN) (Scarselli et al.,
2008), a new neural network family that has shown unprece-
dented generalization capabilities over graphs of different
sizes and structures. These models have already attracted
large interest given their numerous applications to differ-
ent fields where the information is fundamentally repre-
sented as graphs —e.g., (Gilmer et al., 2017; Battaglia et al.,
2016; Zitnik et al., 2018; Fan et al., 2019). In this con-
text, GNNs have also proven to be specially suitable for
applications in computer networks, particularly for network
control and management, as most of the elements involved
in these problems are fundamentally represented as graphs
—e.g., topology, routing (Rusek et al., 2019; Geyer and Carle,
2018; Mao et al., 2019; Almasan et al., 2019). However, the
black-box nature of GNN-based solutions represents nowa-
days a major barrier to achieve their adoption in real-world
networks, as potential malfunctions can lead to temporal ser-
vice disruptions with serious economic damages for network
operators.

Explainability of GNNs has been recently explored in two
main works. A first work emerging from the ML commu-
nity (Ying et al., 2018) analyzes a well-known GNN model
applied to several problems —e.g. chemistry (Debnath et al.,

NetXplain: Real-time explainability of GNN applied to Computer Networks

1991). Likewise, the computer networks community has
made a first attempt to apply a similar approach to GNN-
based network optimization solutions (Meng et al., 2020).
However, both solutions are based on costly iterative opti-
mization algorithms that are executed individually on each
input sample to obtain interpretations. Hence, they do not
meet the requirements to make comprehensive analysis over
large datasets and, more importantly, to be used in real-time
applications.

To address these limitations, this paper proposes NetXplain,
a novel real-time explainability solution for GNNs. This
solution uses a GNN that learns —from Tabula Rasa— how
to interpret the outputs produced by another GNN —trained
for a specific purpose. NetXplain produces human-readable
interpretations of GNNs comparable to state-of-the-art so-
lutions (Ying et al., 2018; Meng et al., 2020). However, it
achieves this at a much more limited cost. In our evaluation,
we apply NetXplain to RouteNet (Rusek et al., 2019) — a
GNN model used to predict the delay of traffic flows in com-
puter networks. Our evaluation results reveal the possibility
to produce interpretations over a wide variety of network
scenarios after training NetXplain over a reduced dataset
generated by costly explainability solutions —e.g., (Ying
et al., 2018; Meng et al., 2020). Particularly, we first train
NetXplain on a small dataset with samples produced by
Metis (Meng et al., 2020). Then, we test the generalization
power of our GNN-based method when applied to network
scenarios fundamentally different to those seen during train-
ing. Likewise, we show that NetXplain far outperforms
state-of-the-art algorithms in terms of computational cost,
running more than 3 orders of magnitude faster on average
than Metis (Meng et al., 2020) when applied to samples of
three real-world network topologies (up to 24 nodes). This
eventually enables to make comprehensive analysis of GNN
solutions at limited cost and, more importantly, to integrate
NetXplain with real-time network optimization solutions to
improve their performance — as discussed in Section 6.

2 GRAPH NEURAL NETWORKS APPLIED
TO COMPUTER NETWORKS

The strong generalization capabilities of GNN over graphs
make these models interesting for applications in the com-
puter networks field, since the most natural way to formalize
many network control and management problems involves
the use of graphs — e.g., topology, routing, inter-flow depen-
dencies (Meng et al., 2020). In this regard, several GNN-
based solutions have been proposed to tackle different use
cases — e.g., network modeling (Rusek et al., 2019; Badia-
Sampera et al., 2019), automatic routing protocols (Geyer
and Carle, 2018). In this section, for illustrative purposes,
we focus on RouteNet (Rusek et al., 2019), as it is quite rep-
resentative of how GNN-based solutions process network-

P- @
oG —» @

P2 P2
=

Figure 1: Transformation from the physical network sce-
nario to the graph representation of RouteNet.

related data to solve complex problems.

RouteNet targets the problem of modeling per-flow Quality-
of-Service metrics in networks (e.g., delay, jitter). For this
purpose, a network snapshot is provided as input —i.e., a
network topology, a routing configuration, and a traffic ma-
trix. To this end, this model makes a transformation of the
physical network scenario into a refined graph representa-
tion in which physical and logical elements are explicitly
represented —paths and links in this case. More specifi-
cally, every link of the physical network topology and every
source-destination path is transformed into a node in the
input graph of the GNN. Finally, edges connect links with
paths according to the routing configuration. Thus, each
path is connected to those links that it traverses given the
input routing scheme. This process is illustrated in Fig. 1,
where we can observe how a physical network scenario with
two paths and three links is transformed into the input graph
of RouteNet. This graph representation enables to model the
circular dependencies between the state of paths and links,
and how they relate to the output network performance met-
rics (e.g., delay).

In this context, applying explainability over this model
would enable to identify the most critical edges of its input
graphs (i.e., path-link relations). These critical edges thus
represent the set of path-link pairs that mostly affect the
per-flow QoS metrics produced by RouteNet. As a result,
explainability solutions would enable to extract relevant
knowledge of the processing made by the GNN given a
network scenario, which can eventually enable many in-
teresting applications for networks — as discussed later in
Section 6.

3 RELATED WORK

Recent years have attracted increasing interest in producing
explainability solutions for neural network models — e.g.,
Convolutional Neural Networks (Bau et al., 2017). Despite
this, explainability techniques for GNN have been scarcely
explored so far. In this context, GNNExplainer (Ying et al.,
2019) is, to the best of our knowledge, the first proposal
approaching this problem.

GNNExplainer is given as input a GNN model and a sample

NetXplain: Real-time explainability of GNN applied to Computer Networks

F l
(ITT1] F-1
I/ﬁ\‘ AT f Y Mo.1 AT
. / GNN_Explainer \ A j
NE NI
K / k / A O/

Figure 2: Schematic description of explainability solutions
for GNN (e.g., GNNExplainer).

graph G that feeds this model, and it produces as output a
subset with the connections G’ C G and the node features
F’ C F that affect most critically the output of the target
GNN (see Fig. 2). This is done by computing a set of
weights w; ; that represent how critical are the pair-wise
connections of input graphs to the prediction accuracy of
the target GNN. Particularly, most relevant connections are
those that have more impact on the loss function used to
train the model (e.g., Mean Squared Error for regression
tasks). The amount of relevant connections produced by the
algorithm can be tuned by setting some parameters.

Overall, GNNExplainer is an explainability solution that tar-
gets the explainability of any GNN applied to classification
tasks (e.g., graph-level, node-level, edge-level classifica-
tion). However, this solution does not support GNN-based
models used for regression. In this context, a posterior
solution proposed from the computer networks commu-
nity presents Metis (Meng et al., 2020), a similar approach
adapted to GNN models trained for regression problems.
Particularly, this work showcases the use of this solution
over several network applications.

Although GNNExplainer (Ying et al, 2019) and
Metis (Meng et al., 2020) are able to produce quality ex-
plainability solutions for a vast range of problems, both have
an important limitation. To compute G’ and F”’ for each
input sample, these solutions use a time-consuming itera-
tive convex optimization method. For instance, producing a
single explainability solution can take up to hundreds of sec-
onds in scenarios with topologies between 14 and 24 nodes
—as shown later in Section 5. This arguably prevents these
methods to be used for real-time applications. Moreover,
their high cost makes them impractical to perform a com-
prehensive test analysis of GNN-based solutions — covering
a wide range of network scenarios — before such solutions
are released to the market.

4 NETXPLAIN: PROPOSED
EXPLAINABILITY METHOD

In this section, we introduce NetXplain, a novel explain-
ability method for GNN that is compatible with real-time
applications. NetXplain is able to produce the same output
as state-of-the-art solutions based on costly iterative opti-

Original GNN

Generate the Explainability dataset _
explainability Train
dataset NetXplain

il ==

Figure 3: High-level workflow of NetXplain.

Explainability GNN

mization algorithms (Ying et al., 2019; Meng et al., 2020),
while operating at much limited cost — at the scale of a
few milliseconds in our experiments in Section 5. This not
only enables to perform real-time troubleshooting of GNN-
based solutions, but also opens the possibility of combining
these solutions with automatic optimization algorithms (e.g.,
Local Search, Reinforcement Learning) to solve more effi-
ciently online optimization problems —as discussed later in
Section 6. To this end, NetXplain uses a GNN that learns
how to interpret a target GNN model that was trained for
a particular task. As shown in Fig. 3, the proposed GNN-
based solution is trained with a dataset generated by an
existing explainability solution (Meng et al., 2020) and,
once trained, the resulting model is able to make one-step
explainability predictions for each input sample of the target
GNN. Note that thanks to the generalization capabilities of
GNN over graph-structured information, once NetXplain
is trained over a particular target GNN solution, it can be
applied to different input graphs not included in the training
dataset. In practice, when applied to GNN-based network
solutions, NetXplain is able to generalize to network scenar-
ios with topologies of variable size and structure not seen
in advance —as shown later in the experiments of Section 5.
The following subsections describe in more detail the main
components of this solution.

4.1 Explainability mask

We refer to the explainability mask as an n X n matrix
that defines the relevance of each edge of an input graph
G = (V, E) on the output produced by the target GNN,
where n = |V/|. This mask enables to interpret which are the
graph connections that mostly affect the predicting power
of the GNN in each case.

Formally, given an input graph G = (V, E)), the proposed
explainability method aims to produce an explainability
mask M € {0, 1}IVIXIVI where cell (u,v) defines a weight
Wy, indicating the importance of the connection between
node u and node v on the overall accuracy of the target GNN.
Particularly, M contains a weight for each pair (u,v) € E.
Fig. 4 further illustrates how the explainability mask is built
from a given input (undirected) graph.

4.2 Explainability dataset

To train NetXplain, we first need to generate a training
dataset D with a set of input samples s € S and their

NetXplain: Real-time explainability of GNN applied to Computer Networks

n0 nl n2
no - Wo1 Wo-2
- nl Woq - -
n2 Wo2 - -

Figure 4: Explainability mask of an input graph.

associated explainability masks M when applied to the tar-
get GNN. Note that this process is made from a black-box
perspective —i.e., the explainability mask interprets the rel-
evance of the input graph connections by analyzing the
input-output correlations in the target GNN. To this end,
we can use specific state-of-the-art iterative optimization
algorithms as those described in Section 3, depending on
the particularities and the purpose of the target GNN (e.g.,
regression, classification). This kind of solutions work as
follows: given a target GNN, which has been trained with a
dataset D, the explainability algorithm applies an iterative
gradient descent method to find the optimal explainability
mask M* that better explains the accuracy of the model —
i.e., it defines weights w,, ,, that represent the impact of each
graph edge (u, v) on the loss function of the target GNN.
More specifically, the calculation of the explainability mask
is driven by the loss function D(M) of Equation 1, which
depends on three factors: () predictive loss, (i¢) entropy
of the values in the mask, and (¢i¢) L1 regularization com-
puted over the mask. The predictive loss quantifies how
the accuracy of the target GNN (V;,;4inq1) degrades when
weighting the connections according to M (V;,4s%). The
two remaining factors, entropy (Equation 2) and L1 regular-
ization, regulate the homogeneity of the mask’s values and
the portion of critical connections respectively. These latter
factors can be weighted according to two hyper-parameters
(i.e., a, B) that can be fine-tuned according to the problem
needs and the target GNN, to eventually achieve masks that
can be easily interpretable by humans.

Through a gradient descent method, these algorithms gradu-
ally converge to the optimal mask A * that minimizes the
loss function (Eq. 1).

D(M) = l(‘/:n'iginala Vmask) + OéH(M) +ﬁHMHL1 (1)

HM) =~ > wyylog(wyy) + (1 = wy)log(l — wu) (2)
(u,v)€EE

We then repeat this process for a small subset of samples
A C D, formally defined in Equation 3.

D' ={(s,M*)|s € A} 3)

Note that D’ contains a small fraction of the original dataset
D, making the cost of generating the explainability dataset
affordable.

Training sample Readout function

hy

hq

hy

Mask value for
connection 0-1

|
|
|
] Wo.q
|
|
|

Input for
connetion 0-1

Figure 5: Adaptation of the readout function in NetXplain
to produce the explainability mask.

4.3 Training the explainability GNN

Finally, we propose the use of an independent GNN
(NetXplain) to learn how to predict explainability masks M
over the target GNN.

First, let us define the underlying architecture of this GNN.
For this purpose, we keep the same architecture of the target
GNN and make some small modifications. The intuition
behind this decision is that the complexity for the target
GNN to learn how to make its output predictions should
be similar to solving the explainability problem over that
GNN -i.e., explaining which connections affected most
such predictions. However, we make a minor change on the
readout function r(-) to adapt it to produce the explainability
mask M. As illustrated in Fig. 5, for every edge (u,v) € E,
we concatenate the hidden-state vectors of these nodes after
the message passing phase is finished (i.e., h,||h,) and this
is passed as input to r(+), which predicts the mask weight
for that edge w,,,,,. Note that this operation can be computed
in parallel for each edge (u,v) € E of the input graph G.

As introduced in Section 4.2, one key aspect of our proposal
is to reduce as much as possible the size of the training
dataset (D’) to make this approach feasible. To achieve
this, we adopt a Transfer Learning approach by reusing the
weights of the original target GNN, except for the read-
out function, whose architectures differ slightly (Fig. 5).
This enables to effectively initialize the explainability GNN
model, as the message-passing functions of this GNN is
expected to be close to those of the target GNN (e.g., simi-
lar feature distributions on the input). Finally, we train the
explainability model with a reduced dataset D’ generated
by a reference explainability algorithm, and this enables to
learn how to produce accurately explainability masks with
low cost (both for training and inference).

4.4 Generalization power of NetXplain

By analysing the training process of NetXplain, we identify
the generation of the dataset D’ as the most computationally
expensive task, even considering that the size of D’ is only
a small portion of the original dataset D.

Note that our proposal aims to learn how to explain poten-
tially any sample that our target GNN could face during

NetXplain: Real-time explainability of GNN applied to Computer Networks

operation. This motivates our choice of using a GNN to
explain a target GNN, as they are specially applicable given
its high generalization power over graph-structured data. As
a result, once trained, the GNN explainability model gener-
alizes to network scenarios not present in its training dataset
D’. This means that NetXplain’s GNN can be trained over a
small dataset to make predictions of the critical connections
from the perspective of the target GNN and, once trained, it
can predict these critical connections over arbitrary network
scenarios (e.g., topologies of variable size and structure).
All this offering an accuracy comparable to state-of-the-art
costly solutions.

5 EVALUATION

In this section, we first evaluate the accuracy of the predic-
tions made by NetXplain with respect to the state-of-the-art
solution Metis (Meng et al., 2020). Then, we quantify the
speed-up when using NetXplain compared to Metis. In our
experiments, we train an explainability model that makes
interpretations over RouteNet (Rusek et al., 2019) — previ-
ously introduced in Section 2.

5.1 Generation of the explainability model

This section first defines the process to generate the ex-
plainability dataset and then the architecture of the GNN
explainability model used by NetXplain.

We generated the explainability dataset using Metis (Meng
et al., 2020). We iteratively applied this algorithm to a
subset of samples from the NSFNet dataset (BNN Center,
2021) used in RouteNet (Rusek et al., 2019). Particularly,
we limited Metis to run 2,000 gradient-descent iterations per
sample, after observing this was enough to ensure conver-
gence. After some experimentation, we observed that using
only 5% of samples randomly selected from the original
dataset was enough to train NetXplain (i.e., 15k samples).
Moreover, the explainability dataset was divided into train-
ing, validation and test datasets by randomly picking 80%,
10% and 10% of the samples, respectively.

As previously mentioned in Section 4.3, we use for the
explainability GNN a similar architecture to the target GNN,
RouteNet (Rusek et al., 2019) in this case. However, we
introduce a change in the readout function. In this case,
outputs are the weights w; ; of a link-path edge in the input
graph of RouteNet (see Fig. 1). To this end, we concatenate
the corresponding hidden states of link; (hy;) and path;
(hp;), and introduce this as input of the readout function.
The output of the readout is thus the weight w;;, which can
be interpreted as quantifying the importance for RouteNet
of a particular src-dst path as it passes through a certain link
in the network.

1.0

[NetXplain with GEANT2
NetXplain with NSFNet
0.8{ ©=I NetXplain with GBN

0.6

CDF

0.4

0.2

Relative error (real-predicted)/real

Figure 6: CDF of the relative error of NetXplain evaluated
on three real-world network topologies.

5.2 Evaluation of the accuracy

We evaluate the accuracy achieved by the NetXplain model
on samples simulated in three real-world topologies (BNN
Center, 2021): NSFNet (14 nodes), GEANT2 (24 nodes),
and GBN (17 nodes). Figure 6 depicts the Cumulative Distri-
bution Function (CDF) of the relative error when predicting
the explainability mask over 1,000 samples not seen during
training, for each topology respectively. We observe that
our explainability model achieves a Mean Relative Error
(MRE) of 2.4% when it is trained and evaluated over sam-
ples of the NSFnet topology (14 nodes). We then repeat
the same experiment training and evaluating the model with
samples of Geant2 (24 nodes), and observe a MRE of 4.5%.
Note that despite NetXplain was trained and evaluated over
samples of the same topology, the network scenarios (i.e.,
routing and traffic matrices) are different across the training
and evaluation samples, which means that the input graphs
seen by the GNN in the evaluation phase are different from
those observed during training. Finally, we further test the
generalization capabilities of NetXplain by training the ex-
plainability GNN with samples from NSFNet and GEANT2,
but in this case we evaluate the model on samples of a dif-
ferent network with 17 nodes (GBN). As a result, NetXplain
achieves a MRE of 11% over this network topology unseen
in advance — dashed line in Figure 6. All these results are
in line with the generalization numbers already observed in
the target GNN model (Rusek et al., 2019).

These results show that with NetXplain, we can achieve
a similar output to state-of-the-art solutions based on iter-
ative optimization — even when we tested it over network
scenarios not seen during training.

5.3 Evaluation of the execution cost

In this section, we evaluate the inference time to compute
an explainability mask with NetXplain with respect to state-
of-the-art solutions — Metis (Meng et al., 2020) in this case.
This was done by randomly selecting 500 samples from
the three datasets previously used: NSFNet, GEANT2 and
GBN (BNN Center, 2021).

NetXplain: Real-time explainability of GNN applied to Computer Networks

Table 1: Execution time of NetXplain with respect to Metis,
evaluated on three real-world network topologies.

Topology Method Mean (s) Std deviation (s)
NSFNet Benchmark (Metis) 98.139 2.455
NetXplain 0.012 0.001
GBN Benchmark (Metis) 150.83 1.79
NetXplain 0.0214 0.005
GEANT2 Benchmark (Metis) 191.46 2.76
NetXplain 0.029 0.002

Table 1 summarizes the execution times (in seconds) differ-
entiated over samples of the three network topologies. Note
that both solutions were executed in CPU and in equal con-
ditions. As we can observe, NetXplain achieves an average
speed-up of ~7,200x across all the network topologies (i.e.,
it is more than 3 orders of magnitude faster).

This shows the benefits of NetXplain with respect to state-
of-the-art solutions, as it can be used to make extensive
explainability tests at limited cost. More importantly, its
operation at the scale of milliseconds makes it compatible
with real-time applications for computer networks.

6 DISCUSSION ON POSSIBLE
APPLICATIONS

This section discusses two main use-case categories where
the application of GNN-based explainability solutions can
be especially beneficial for computer networks: (i) Test &
troubleshooting, and (i¢) Improving network optimization
tasks. Particularly, we put the focus on the advantages of
leveraging the fast and low-cost interpretations of NetXplain
with respect to state-of-the-art explainability methods.

6.1 Test & Troubleshooting

To create GNN-based solutions for computer networks, we
need guarantees that they will work optimally when de-
ployed in real-world networks. In this context, manufac-
turers would typically need to make extensive tests to their
GNN solutions to check how they generalize to different
network conditions. Using NetXplain would enable to col-
lect human-readable interpretations of the internal data pro-
cessing made by GNNs. For instance, we can identify the
network elements that mainly drive the decisions made by
the model —which are given by the explainability mask of
NetXplain— and then observe if the properties of the selected
elements are consistent across similar network scenarios.
This would be a good indicator that the model generalizes
well and, consequently, it is reliable for deployment. In
this context, making such a comprehensive analysis using
state-of-the-art explainability solutions would result in large
costs for manufacturers; while the limited cost of NetXplain
would enable to reduce dramatically both the cost and the
time needed before releasing the product to the market.

6.2 Improving network optimization solutions

Network optimization often requires to deal with very high-
dimensional action spaces —e.g., all the valid src-dst routing
combinations in networks up to thousands of nodes. As
a result, network optimization tools only evaluate a small
portion of configurations before they make a final decision.
Thus, the exploration strategy used by these tools has a criti-
cal impact on the performance they can eventually achieve.

In this context, explainability methods can provide mean-
ingful interpretations of the current network state that can
be useful to guide more efficiently optimization algorithms
—e.g., Reinforcement Learning (Almasan et al., 2019), Lo-
cal Search (Gay et al., 2017). For instance, using a NetX-
plain model trained over RouteNet —as the one of Section 5—
would enable to point to critical paths and links that are
mostly affecting the network performance. This could be
highly beneficial for optimization algorithms to explore al-
ternative configurations targeting specifically these critical
points. In this context, computational efficiency is a must
for optimization tools, as it directly affects to the amount of
configurations that can be evaluated before producing the
final decision. Thus, counting on real-time solutions, like
NetXplain, offers an important competitive advantage with
respect to state-of-the-art explainability methods.

7 CONCLUSIONS

In this paper, we proposed NetXplain, an efficient explain-
ability solution for GNN. NetXplain uses a GNN that learns
how to produce accurate interpretations over the outputs
produced by another GNN model. In contrast to state-of-
the-art explainability solutions based on costly optimization
algorithms, the proposed solution can be integrated into net-
work control and troubleshooting systems operating in real
time. We tested NetXplain over RouteNet —a GNN model
that predicts per-flow delays in computer networks— and
showed that our solution can produce an output equivalent
to state-of-the-art solutions with an execution time more
than 3 orders of magnitude shorter (in networks up to 24
nodes). Lastly, we discussed the potential applications that
can have this real-time GNN-based explainability solution
particularly for computer networks.

ACKNOWLEDGEMENT

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme within
the framework of the NGI-POINTER Project funded under
grant agreement No. 871528. This paper reflects only the
author’s view; the EC is not responsible for any use that
may be made of the information it contains. This work
was also supported by the Spanish MINECO under contract
TEC2017-90034-C2-1-R (ALLIANCE) and the Catalan In-
stitution for Research and Advanced Studies (ICREA).

NetXplain: Real-time explainability of GNN applied to Computer Networks

REFERENCES

Almasan, P., Sudrez-Varela, J., Badia-Sampera, A., Rusek,
K., Barlet-Ros, P., Cabellos-Aparicio, A., 2019. Deep
reinforcement learning meets graph neural networks: Ex-
ploring a routing optimization use case. arXiv preprint
arXiv:1910.07421 .

Badia-Sampera, A., et al., 2019. Towards more realistic
network models based on graph neural networks, in: Pro-
ceedings of the ACM CoNEXT student workshop, pp.
14-16.

Battaglia, P., Pascanu, R., Lai, M., Rezende, D.J., et al.,
2016. Interaction networks for learning about objects,
relations and physics, in: Advances in neural information
processing systems (NIPS), pp. 4502-4510.

Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.,
2017. Network dissection: Quantifying interpretability of
deep visual representations, in: Proceedings of the IEEE

conference on computer vision and pattern recognition,
pp. 6541-6549.

BNN Center, 2021. Network modeling
datasets. URL: https://github.
com/knowledgedefinednetworking/
NetworkModelingDatasets.

Debnath, A.K., Lopez de Compadre, R.L., Debnath, G.,
Shusterman, A.J., Hansch, C., 1991. Structure-activity
relationship of mutagenic aromatic and heteroaromatic
nitro compounds. correlation with molecular orbital ener-

gies and hydrophobicity. Journal of medicinal chemistry
34, 786-797.

Fan, W, et al., 2019. Graph neural networks for social
recommendation, in: The ACM World Wide Web Confer-
ence (WWW), pp. 417-426.

Gay, S., Hartert, R., Vissicchio, S., 2017. Expect the unex-
pected: Sub-second optimization for segment routing, in:
IEEE INFOCOM 2017, pp. 1-9.

Geyer, F., Carle, G., 2018. Learning and generating dis-
tributed routing protocols using graph-based deep learn-
ing, in: Proceedings of the 2018 Workshop on Big Data
Analytics and Machine Learning for Data Communica-
tion Networks, pp. 40-45.

Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl,
G.E., 2017. Neural message passing for quantum chem-
istry. arXiv preprint arXiv:1704.01212 .

Mao, H., Schwarzkopf, M., Venkatakrishnan, S.B., Meng,
Z., Alizadeh, M., 2019. Learning scheduling algorithms
for data processing clusters, in: Proceedings of ACM
SIGCOMM, pp. 270-288.

Meng, Z., Wang, M., Bai, J., Xu, M., Mao, H., Hu, H., 2020.
Interpreting deep learning-based networking systems, in:
Proceedings of ACM SIGCOMM, pp. 154-171.

Rusek, K., Suarez-Varela, J., Mestres, A., Barlet-Ros, P.,
Cabellos-Aparicio, A., 2019. Unveiling the potential
of graph neural networks for network modeling and op-
timization in sdn, in: Proceedings of the 2019 ACM
Symposium on SDN Research, pp. 140-151.

Samek, W., Wiegand, T., Miiller, K.R., 2017. Explain-
able artificial intelligence: Understanding, visualizing

and interpreting deep learning models. arXiv preprint
arXiv:1708.08296 .

Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Mon-
fardini, G., 2008. The graph neural network model. IEEE
Transactions on Neural Networks 20, 61-80.

Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, 1.,
Panneershelvam, V., Lanctot, M., et al., 2016. Mastering
the game of go with deep neural networks and tree search.
Nature 529, 484-489.

Vinyals, O., Babuschkin, I., Czarnecki, W.M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D.H., Powell, R., Ewalds, T.,
Georgiev, P, et al., 2019. Grandmaster level in starcraft

ii using multi-agent reinforcement learning. Nature 575,
350-354.

Ying, R., et al., 2018. Graph convolutional neural networks
for web-scale recommender systems, in: Proceedings of
the ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pp. 974-983.

Ying, Z., Bourgeois, D., You, J., Zitnik, M., Leskovec, J.,
2019. Gnnexplainer: Generating explanations for graph
neural networks, in: Advances in neural information pro-
cessing systems, pp. 9244-9255.

Zitnik, M., Agrawal, M., Leskovec, J., 2018. Modeling
polypharmacy side effects with graph convolutional net-
works. Bioinformatics 34, 1457-1466.

https://github.com/knowledgedefinednetworking/NetworkModelingDatasets
https://github.com/knowledgedefinednetworking/NetworkModelingDatasets
https://github.com/knowledgedefinednetworking/NetworkModelingDatasets

