
EFFICIENT DATA LOADER FOR FAST SAMPLING-BASED GNN TRAINING ON
LARGE GRAPHS

Youhui Bai 1 Cheng Li 1 Zhiqi Lin 1 Yufei Wu 1 Youshan Miao 2 Yunxin Liu 2 Yinlong Xu 1

ABSTRACT
By leveraging GPU accelerators, existing frameworks combine mini-batch and sampling for training graph neural
networks (GNNs) on large graphs. However, this setup faces a scalability issue since loading rich vertex features
from CPU to GPU through a limited bandwidth link usually dominates the training cycle. In this paper, we
propose PaGraph, a novel, efficient data loader that supports general and efficient sampling-based GNN training
on single-server with multi-GPU. PaGraph significantly reduces the data loading time by exploiting available GPU
resources to cache frequently-accessed graph data. It also embodies a lightweight yet effective caching policy that
takes into account graph structural information and data access patterns of sampling-based training simultaneously.
Furthermore, to scale out on multiple GPUs, PaGraph develops a fast GNN-computation-aware partition algorithm
to avoid cross-partition access during data-parallel training and achieves better cache efficiency. Finally, it overlaps
data loading and GNN computation for further hiding loading costs. Evaluations on GCN and GraphSAGE
models, using the Neighbor and Layer-wise sampling, show that PaGraph could eliminate the data loading time
from the GNN training pipeline, and achieve up to 4.8× performance speedup over the state-of-the-art baselines.
Together with preprocessing optimization, PaGraph further delivers up to 16.0× end-to-end speedup. The two
papers related to this submission were published at ACM SoCC 2020 (Lin et al., 2020) and IEEE TPDS 2020 (Bai
et al., 2021).

1 PROBLEM STATEMENT

Recently, graph neural networks (GNNs) (Zhou et al., 2018;
Kipf & Welling, 2017) have been gaining popularity. Under
the time and resource constraints, it would be no longer
efficient or even feasible to make a full giant graph train
totally as a batch. So, a typical practice is sampling (Chen
et al., 2018a), which repeatedly samples subgraphs from
the original graph as the input of a mini-batch, reducing
the single mini-batch computation while still converging to
expected accuracy.
However, the sampling-based GNN training over GPU
suffers from a severe data loading problem that needs
to be resolved. To understand this, we train a 2-layer
GCN (Kipf & Welling, 2017) as our walk-through example
over 1 to 4 GPUs. We use the widely-used neighbor sam-
pling (NS) (Hamilton et al., 2017) and layer-wise sampling
(LS) (Chen et al., 2018a) to create mini-batches of vertices
for each training iteration. LS is almost identical to NS
except it considers a layer as a whole and constrains the
total number of sampled vertices per layer rather than per

1School of Computer Science and Technology, University of
Science andTechnology of China 2Microsoft Research. Correspon-
dence to: Cheng Li <chengli7@ustc.edu.cn>.

Proceedings of the First MLSys Workshop on Graph Neural Net-
works and Systems (GNNSys’21), San Jose, CA, USA, 2021. Copy-
right 2021 by the author(s).

 0
 10
 20
 30
 40
 50
 60

livejournal lj-large enwiki

E
po

ch
 T

im
e(

s) Data Loading
Computation

(a) Neighbor Sampling.

 0
 10
 20
 30
 40
 50
 60

livejournal lj-large enwiki

E
po

ch
 T

im
e(

s) Data Loading
Computation

(b) Layer-wise Sampling.
Figure 1. Data loading and computation time in an epoch of train-
ing a 2-layer GCN using two sampling methods.

vertex, therefore avoiding the number of sampled vertices
growing exponentially with deeper layers. As suggested by
existing work (Chen et al., 2018b;a), the neighbor sampling
method here selects 2 neighbors for each vertex, while the
layer-wise sampling method limits the number of vertices
sampled per layer to 2400. As follows, we report our major
observations of performance inefficiencies and reveal their
root causes, which together motivate the design of our work.
We begin with the single-GPU training with the popular
DGL library (DGL Team, 2019) and a GTX-1080Ti GPU.
The data loading dominates the training time. Figure 1
summarizes the training epoch time over different graphs
and shows the time break down into data loading and com-
putation, w.r.t 3 large real-world graphs, livejournal (Yang
& Leskovec, 2015), lj-large (Mislove et al., 2007) and en-
wiki (KONECT, 2017). Note that we omit the sampling
overhead since sampling runs faster than and is overlapped
with data loading already. Clearly, across all three graph

Efficient Data Loader for Fast Sampling-based GNN Training on Large Graphs

0 1 2 3

Loaded frequency (10n)

0

0.5

1

Pe
rc

en
ta

ge

wiki-talk NS

(a) Neighbor Sampling.

0 0.5 1 1.5 2

Loaded frequency (10n)

0

0.5

1

Pe
rc

en
ta

ge

wiki-talk LS

(b) Layer-wise Sampling.
Figure 2. CDF (Cumulative Distribution Function) for the access
frequencies of vertices when training GCN over the wiki-talk
dataset using two sampling methods.

datasets, data loading takes much longer time than compu-
tation. For example, GCN on livejournal spends 74% and
56% of the end-to-end training time on data loading when
using neighbor and layer-wise sampling, respectively. This
situation will become worse, when multiple GPUs are used
to train a shared model collectively, since the computation
time will be reduced and the data loading overhead will
become more dominating.
Redundant vertex access pattern. We continue to under-
stand the total amount of data sent from CPU to GPU for
completing a training epoch. Surprisingly, the loaded data
volume can be up to more than 4× the total number of ver-
tices of the target graphs in our experiments. This indicates
that some vertices are loaded multiple times. To validate
this, we collect the vertex visiting trace across different
training jobs and count the number of visits per-vertex basis.
Figure 2 is a CDF graph for the access frequencies of loaded
vertices for training GCN over the wiki-talk graph, when
using both the NS and LS Sampling method. We observe
more than 32.4% of vertices have been repeatedly used by
up to 519 times. This redundant vertex access pattern ex-
acerbates the data loading burden, and creates data loading
of tens of gigabytes for each epoch. We further discover
that those vertices have higher out-degree than other less
frequently visited or non-visited vertices. This is because a
vertex with a high out-degree in a graph is likely connected
with multiple train vertices, making it have chances to be
selected multiple times by different mini-batches.
Based on this observation, we draw an inspiration that
caching in GPU memory the feature information of ver-
tices with high out-degrees will reduce the data loading
volumes shipped from CPU to GPU, and thus accelerate the
sampling-based GNN training. However, this optimization
would impose a few challenges, such as contending GPU
memory with GNN computation, incurring overhead for
maintaining such a cache, etc.
GPU resource underutilized. Surprisingly, regardless of
the sampling method, only a small fraction of the comput-
ing and memory resources on GPU have been utilized. For
instance, with neighbor sampling, only around 20% of the
GPU computational resources are in-use, with even less
memory consumption, e.g., less than 10%. This is because
the mini-batch data that CPU sent to GPU is not sufficient to

fully explore the hardware parallelism in GPU. In the mean-
while, the GPU is idle waiting for training data samples to
arrive at most time. This observation leads us to consider to
leverage spare GPU resources for caching the feature infor-
mation of frequently visited vertices as possible for cheap
re-usage. Theoretically, this caching solution could elimi-
nate the amount of feature information that should gathered
and sent from CPU to GPU, which consequently eliminate
the CPU feature collection and PCIe data transferring bot-
tlenecks.
High CPU contention between sampling and feature col-
lection. We then break down the time spent in different
stages of the data loading process and find that the feature
collection phase is CPU-intensive and takes much longer
than the CPU-GPU data movement. For instance, it ac-
counts for 50.4, 55.1, and 56.3% of the total data loading
time, for the three used datasets, respectively. This surpris-
ing result leads to: (1) with a single GPU, we achieved
about 8GB/s PCIe bandwidth utilization at maximum (the
capacity is 16GB/s), while the average utilization is lower;
(2) with multiple GPUs, concurrent workers for collecting
features would contend CPU resources with samplers, e.g.,
the time for sampling and feature collection increased by
88% and 59% over the 1-GPU case, respectively, while the
GPU computation time remains unchanged. In the 4-GPU
case, the maximum PCIe bandwidth utilization drops to half
and the average is even worse. This indicates that the CPU
capacity cannot cope with the GPU computation demands,
given the large amount of data required by each iteration.
As a consequence, to reduce the feature collection cost, we
have to consider to reduce the amount of data it should be
gathered in this phase, as well as to isolate the resource
allocation for both sampling and feature collection.
Serialized data loading and GNN computation. With
the dominating library DGL, though data loading consumes
CPU and PCIe, and GNN computation is scheduled to GPU,
they are still executed in a serial order. DGL does not lever-
age to overlap the two stages in the training pipeline, mainly
because the data loading dominates the whole training space
and the GNN computation runs faster. However, in our
work, adopting caching significantly impacts the training
pipeline by reducing the data loading cost while increas-
ing the computation density as more data samples are fed.
Therefore, the new situation provide us with opportunities
to pipeline the data loading and GNN computation to hide
one’s cost into the other’s, and vice versa. This pipeline
design also introduces a positive effect to improve caching
efficiency when facing large graphs as it can reduce the
amount of data that need to be cached in GPU memory.

2 PAGRAPH

Motivated by the experimental results presented in §1, as
shown in Figure 3, we propose PaGraph, a novel, efficient
data loader to enable fast sampling-based GNN data paral-

Efficient Data Loader for Fast Sampling-based GNN Training on Large Graphs

Loader

......

mini-
batch

GNN Model

Graph Store Server

Graph Data

Trainer 1 Trainer NGradient Sync.

...

...

GNN Model

Loader

......

mini-
batch

Figure 3. Overall architecture of PaGraph. For simplicity, direc-
tions of edges in graphs are omitted.

lel training on large graphs. We introduce three key tech-
niques to PaGraph: 1) a GNN computation-aware caching
mechanism for reducing the data loaded from CPU to GPU,
2) a cache-friendly data parallel training method to scale
GNN training on multiple GPUs, and 3) a two-stage training
pipeline to overlap data loading and GNN computation.

2.1 GNN Computation-aware Caching

Caching policy. To generate better models, for each epoch,
most training algorithms require a randomly shuffled se-
quence of training samples, which makes it impossible to
predicate the vertices in each mini-batch at runtime. The
neighbors of a vertex are also randomly selected during
training. Therefore, it is hard to foretell which vertex is
most likely to be accessed at the next mini-batch. However,
due to the unique access patterns of the neighbor-sampling
method, the out-degree of a vertex indicates the probability
of it being selected throughout the whole epoch. This says
that with a higher out-degree, a vertex is more likely to be
an in-neighbor of other vertices, and thus more likely to be
sampled in a mini-batch. Thus, it is sufficient to fill up the
cache with high out-degree vertices.
However, a dynamic caching policy is not suitable for the on-
GPU cache. This is because GPU cannot work stand-alone,
and all computations performed at GPU must be assembled
into GPU kernels and launched by CPU. Most current GNNs
are lightweight (Zhou et al., 2018), and hence graph data
swapping between CPU memory and GPU memory has
intolerable overhead during training. Therefore, instead
of making on-the-fly decisions on what to be cached, e.g.,
LRU (Chrobak & Noga, 1999), we use static caching to
avoid the overhead of dynamic data swapping. To do so, we
can pre-sort vertices by out-degree offline, and select top
high out-degree vertices at runtime to fill up the GPU cache.
Though it is simple, as shown in §3, this static caching
policy effectively achieves a high cache hit ratio.
Cache memory space. To avoid resource contention with
the high priority training computation, we need to estimate
the maximum amount of available GPU memory for the

…

Graph
Store Server

Mini-batch
Data

GNN
Model

…

f-3
f-4
f-8

f-102
f-418

s-3
s-4
s-8

s-102
s-418

…

Field 1 Field 2Vertex ID

…

3
5
8

102
421 …

…

…

GPU Memory CPU Memory
Graph Cached Data

…

3
4
8

102
418

Figure 4. New data loading flow with caching.
cache allocation. To achieve this, we leverage the fact that
memory consumption is similar across training iterations.
This is because the sampling-based mini-batch training uses
almost the same amount of data samples as input and per-
forms almost the same amount of computation to train a
shared GNN model for each iteration. As a result, it is suffi-
cient to decide the right cache size via a one-time sampling
of GPU memory usage. In more detail, right after the first
mini-batch training, we check the size of free GPU memory
during training and allocate the available GPU memory for
caching graph data accordingly.
Data management. In the GPU cache, we manage the
cached vertex features by maintaining two separate spaces.
First, we allocate consecutive memory blocks for feature
data. The cached feature data of vertices is organized as
several large [N,Ki] matrices, where N denotes the number
of the cached vertices, and Ki is the dimension of features
under the i-th feature-name fields. Second, to enable fast
lookup, we organize the vertex meta data into a hash table
to answer whether the queried vertex is cached and where it
locates for later retrieval. The meta data is far less than the
cached feature data, e.g., no more than 50 MB for a partition
with 10 million vertices.

2.2 Data Parallel Training and Partition

The current design of GNN systems such as DGL, balance
computation across multiple GPUs but make them share
a single copy of graph data (DGL Team, 2019). When
directly applying the above GNN-aware caching method
to this setting, we observe a cache inefficiency phenomena,
i.e., the cache hit ratio keeps decreasing with the increasing
number of GPUs. This is because the single graph serves
the data visiting locality for parallel Trainers on multiple
GPUs, and thus all GPU caches would keep similar vertices.
To address this cache inefficiency, we introduce “data par-
allelism” to PaGraph, which has been widely applied to
leverage multiple GPUs to train neural network models
efficiently. In our system, rather than accessing a shared
graph, a Trainer consumes its data partition (subgraph), per-
forms the training computation to get local gradients, and
then exchanges gradients among peers to update its model
replica synchronously. Clearly, the benefits of data paral-
lelism are that data locality can be improved and the number
of cached vertices in total will be increased. To make this
happen, although there exist numerous graph partition al-
gorithms (Abbas et al., 2018), we still need to design a
new one to meet the following two goals specific to data

Efficient Data Loader for Fast Sampling-based GNN Training on Large Graphs

parallel GNN training. First, it should keep computation bal-
anced across different Trainers, as unbalanced computation
may result in a different number of mini-batches per epoch
for different Trainers. This will break gradient synchro-
nization and get training stuck. Second, it needs to avoid
cross-partition accesses from different Trainers as possible.
Computation balance. To achieve computation balance
across different Trainers, all the partitions should have a
similar number of train vertices. Assume that we need K
partitions. We scan the whole train vertex set, and iteratively
assign the scanned vertex to one of K partitions. During
every iteration t, a train vertex vt is assigned with a K
dimension score vector, where the i-th element represents
the feasibility for assigning the vertex to the i-th partition
for i ∈ [1,K]. The score is computed by Eq.(1).

score(i)vt = |TVi ∩ IN(Vt)| ·
TVavg − |TVi|
|PVi|

, (1)

TVi represents the train vertex set already assigned to the
i-th partition. IN(Vt) denotes the L-hop in-neighbor set
of train vertex vt. PVi controls the workload balance, and
denotes the total number of vertices in the i-th partition,
including the replicated vertices. vt is most likely to be
assigned to a partition which has smallest PV . TVavg is the
expected number of train vertices in the final i-th partition.
We set TVavg as |TV |

K so that all partitions will get almost
the same number of train vertices.
Self-reliance. For the queries including the edges across
different partitions, they must be forwarded to the Graph
Store Server to get a full set of neighbors. Inspired by (Gon-
zalez et al., 2012), PaGraph introduces minimum extra ver-
tices and edges in each partition to deal with cross-partition
edges. For each partition, PaGraph extends the sub-graph
with redundant vertices and edges to include all the neighbor
vertices of required hops during sampling. For GNN models
with L GNN layers, we will include L-hops in-neighbor ver-
tices for each train vertex, e.g., a one-layer GNN model only
requires to include direct in-neighbors of each train vertex.
PaGraph only brings in necessary edges for the extended
vertices to satisfy the required message flow during training.
Note that the extended vertices may include train vertices.
These extended train vertices are regarded as mirrors (Gon-
zalez et al., 2012) and will not be trained. In this way,
partitions are independent from each other. Each Trainer
can sample mini-batches entirely from its own subgraph
without accessing the global graph structure.

2.3 Pipelining Data Loading and GNN Computation

Although most real-world graphs exhibit high skewness,
given that GPU memory size is often limited to 10-30 GBs,
the stand-alone caching mechanism may not be sufficient
for supporting GNN computation over large graphs, most of
whose vertices cannot be cached. Therefore, in those cases,
data loading will remain as a bottleneck. To complement
caching and partitioning, we further explore the opportunity

2020/11/13 ADSL 14

time

D0

C0

Loading

Computing

m0 m1 m2 …

D1 D2 …

Coord.

Queue

C1 C2 …

(a) New pipeline

2021/3/7 ADSL 15

Trainer Cacher

features
features

G
PU

 M
em

or
y

CPU graph store

features

①
features

Fetcher ①
②

…
…

…

…

(b) Memory management when pipeline enabled
Figure 5. Overview of data-loading-GNN-computation pipeline
to hide the data loading overhead into the computation time.
This requires us to design a new pipeline to parallelize the
current mini-batch computation and the prefetching graph
data for the next mini-batch.
Figure 5a shows our two-stage training pipeline design,
where we break the original sequential execution into two
parallel streaming executions, namely, loading and comput-
ing. We use a message queue to coordinate the execution
of two streams. By taking the input from Sampler, the
loading streaming executor is responsible for organizing
the required feature information for the selected mini-batch
vertices from both graph store and GPU cache (see Fig-
ure 5b). When loading is done, it posts a ready message
including the location of batched data in GPU memory to
the shared message queue. On the other hand, the com-
puting executor sits in a loop and periodically checks the
arrival of new messages from the loading executor. It pops
a message from the head of the shared queue and schedules
the corresponding GNN computation, which will consume
the already prefetched data.
The new pipeline design leads us to further partition GPU
memory into three parts for GNN computation, graph data
caching, and buffering prefetched data, respectively (See
Figure 5b). However, we claim that the prefetching buffer
will not exacerbate the GPU memory tension due to the
following reasons. First, each mini-batch data consumes
less than 900 MB memory space, taking only 8% of GPU
memory on the one device used in our evaluation. Second,
we put a limit on the maximal number of prefetching tasks
to avoid memory contention. We also use the length of the
message queue as feedback to guide the loading executor to
adaptively slow down or speed up prefetching.
3 EVALUATION

Experimental Setup We run experiments on a multi-GPU
server, which consists of dual Intel Xeon E5-2620v4 CPUs,
512GB DDR4 DRAM and 4 NVIDIA GTX 1080Ti (11GB
memory) GPUs with no NVLink connections. It runs Cen-
tOS 7.6, CUDA v10.1, DGL v0.4, and PyTorch v1.3.

Efficient Data Loader for Fast Sampling-based GNN Training on Large Graphs

Dataset vertex# edge# feature label
reddit 232.96K 114.61M 602 41

wiki-talk 2.39M 10.04M 600 60
livejournal 4.04M 69.46M 600 60

lj-link 5.20M 103.55M 600 60
lj-large 10.69M 224.61M 400 60
enwiki 12.15M 756.28M 400 60

friendster 64.19M 2.15B 400 60

Table 1. Statistics of datasets. (K: thousand, M: million, B: Billion)

We use seven real-world graph datasets listed in Table 1
for evaluation, and adopt Neighbor Sampling (NS) and
Layer-wise Sampling (LS) combined with Skip Connec-
tion (Huang et al., 2018), to train two representative GNN
models, Graph Convolutional Network (GCN) and Graph-
SAGE (Hamilton et al., 2017). For NS, the neighbor size
ranges from 2 to 16. We set the layer size as 2400 for
layer-wise sampling as suggested by FastGCN (Chen et al.,
2018a). We set the training batch size as 6000 for the whole
of evaluation, following DGL’s suggestions. Due to space
limit, we report results corresponding to neighbor sampling
at most time. We observe similar trends across the two
sampling methods, proving that our solution is applicable to
various sampling methods. We also omit the detailed results
about convergence, impacts of the loaded data volume, etc.
We deploy the original DGL as the first baseline. In addition,
we run an advanced DGL where the preprocessing (Chen
et al., 2018b) optimization is enabled as another baseline,
denoted as “DGL+PP”. The idea behind preprocessing is
to remove the first layer of GNN model by aggregating the
corresponding features offline.

3.1 Single GPU Performance

Figure 6 shows the single-GPU training performance of
GCN and GraphSAGE on different datasets. Overall, Pa-
Graph achieves training performance speedups from 2.4×
(lj-large) to 3.9× (reddit) for GCN and from 1.3× (lj-large)
to 4.9× (reddit) for GraphSAGE, compared to DGL. We
observe that the combination of preprocessing and DGL
(DGL+PP) behaves differently across the two GNN models,
i.e., the performance speedup of GCN achieved by pre-
processing is better than GraphSAGE. This is due to the
different forwarding procedures used in GCN and Graph-
SAGE, which leads GraphSAGE to more CPU-GPU data
transfer compared with GCN. In contrast, we further ob-
serve that our optimizations in PaGraph can better exploit
the potential of the preprocessing optimization, other than
the vanilla DGL. For instance, PaGraph+PP improves the
performance of DGL+PP by 2.1× to 3.0× and 1.8× to 6.2×
for both GCN and GraphSAGE across the first 6 datasets.
Training time breakdown. To further explore the data
loading overhead reduced by PaGraph, we break down the
GCN training time on both DGL and PaGraph into GPU
computation time and CPU-GPU data loading time. We
collect such system statistics using nvprof (NVIDIA Corpo-
ration, 2007) and PyTorch Profiler (PyTorch Team, 2017).

 0
 5

 10
 15
 20
 25
 30

reddit wiki-talk livejournal

E
po

ch
 T

im
e(

s)

DGL PaGraph DGL+PP PaGraph+PP

0

15

30

45

60

lj-link lj-large enwiki

 0
 5

 10
 15
 20
 25
 30

reddit wiki-talk livejournal

E
po

ch
 T

im
e(

s)

0

15

30

45

60

lj-link lj-large enwiki

Figure 6. Single-GPU training performance of GCN (top) and
GraphSAGE (bottom). (PP: preprocessing optimization).
Figure 7 shows the breakdown results corresponding to ex-
periments related to GCN in Figure 6 (We also observe the
similar treads for GraphSAGE). In this clustered bar figure,
from left to right, each bar cluster presents the result of DGL,
DGL+PP, PaGraph and PaGraph+PP, respectively. Consis-
tent with the results presented in §1, DGL using the built-in
data loader faces a severe loading problem. Although pre-
processing saves both computation and data loading, it still
suffers from the data loading bottleneck, which occupies up
to 61% of training time.
In contrast to the baseline data loader, thank to the joint
effort of caching and pipelining, PaGraph completely over-
laps the data loading phase and the GPU computation phase,
thus removing the loading cost from the training pipeline,
for the original GNN model and its variant with preprocess-
ing enabled. We find that caching stand-alone is sufficient
for training the target model over the first three datasets.
This is because these datasets are small and can be fully
cached into GPU memory, and the data loading time be-
comes negligible. Unlike this, although the data loading
time has already been reduced from 65.7-78.7% for the sec-
ond three more massive datasets by caching, it still accounts
for up to 34.9% of the whole training time. In this case,
pipelining data loading and computation could completely
hide the cost of the former case into the latter one. Inter-
estingly, the computation time is slightly reduced in some
cases like “PaGraph+PP” for lj-large dataset, since we care-
fully avoid CPU contentions among parallel training jobs.
However, the computation time is slightly increased in some
cases like “PaGraph” for enwiki dataset. This is because the
background pre-fetching process spends some CPU cycles,
which may influence the GPU kernel launching.

3.2 Effectiveness of Caching Policy and Pipelining

Next, we compare our static cache policy with the policy
presented in AliGraph (Zhu et al., 2019), which supports
GNN training across multiple CPU machines. It reduces
communication costs between training tasks and the remote
storage system by caching a vertex at local if its in-degree to
out-degree ratio exceeds a threshold. Since the open-source

Efficient Data Loader for Fast Sampling-based GNN Training on Large Graphs

 0

 10

 20

 30

 40

 50

 60

reddit wiki-talk livejournal lj-link lj-large enwiki

Tr
ai

ni
ng

 T
im

e
(s

)
Hidden Data Loading
Data Loading
Computation

Figure 7. Breakdown of GCN training time on single GPU. Each
bar cluster from left to right represents DGL, PaGraph, DGL+PP
and PaGraph+PP. “Hidden Data Loading” points to the part of data
loading time fully overlapped with computation in PaGraph.

	0

	20

	40

	60

	80

	100

20 40 60 80

C
ac
h
e	
H
it
	R
at
io
	(
%
)

Cached	Data	(%)

Optimal
PaGraph
Random
AliGraph

Figure 8. Cache policy comparison with different cache capacity.
“Optimal” represents the ideal cache hit ratio. (Dataset: livejournal)

 5

 10

 15

 0 20 40 60 80 100

Ep
oc

h
Ti

m
e

(s
)

Cached Percentage (%)

PaGraph
PaGraph (AliGraph caching)

Figure 9. Training performance of PaGraph at different cached
percentage. (Dataset: livejournal)
version of AliGraph did not include the cache code, and it
was built atop of TensorFlow other than PyTorch and de-
signed for CPU machines, to make a fair comparison, we
implement its caching policy in PaGraph. We also compare
to the random strategy, which randomly keeps vertices in-
side Loader. We also derive the best cache hit ratio which
can be obtained if all subsequent vertex visits can be ab-
sorbed in cache, denoted “optimal”. The derivation is done
by analyzing the visiting trace of training.
Figure 8 shows the cache hit ratio under different cached
ratio using a single GPU, respectively. We observe that
when only 20% of graph are cached, we can achieve more
than 50% hit ratio, which is more than 200% of the perfor-
mance of other polices. More interestingly, it shows that our
caching policy is not complicated, but is incredibly effective,
very close to the optimal case. We also achieve the similar
close-optimal cache hit ratio on other datasets. Furthermore,
we explore the performance implications of the different
cache hit ratios achieved by both PaGraph and AliGraph. As
shown in Figure 9, as the proportion of cached graph data in-
creases, the per-epoch training time achieved by both DGL
and PaGraph keeps declining and converges to 6.7 seconds
when all required data is cached. However, when the cache
size is constrained, PaGraph’s caching policy achieves up

 0

 100

 200

 300

 400

1 2 3 4Th
ro

ug
hp

ut
 (b

at
ch

/s
)

GPU#

PaGraph
DGL

 0
 50

 100
 150
 200
 250

1 2 3 4
GPU#

PaGraph
DGL

Figure 10. GCN (left) and GraphSAGE (right) scalability of Pa-
Graph and DGL on enwiki dataset. (Preprocessing enabled)

to 1.5× performance speedup than the AliGraph’s. More
interestingly, when the cached percentage reaches 40%, the
training performance becomes stable, and no further im-
provements are observed when more cache space is used.
This is because at that critical point, the data loading time
is reduced to be shorter than the GPU computation time,
and our pipeline mechanism could completely overlap the
two phases. This further reveals an additional benefit of
combining both caching and pipelining, which makes our
solution applicable and deliver good performance under
GPU memory constraints.
With our caching policy, PaGraph achieve massive data load-
ing reductions on large graphs, compared to DGL. Overall,
we achieve 91.8%, 80.9% and 81.0% loading reductions for
lj-link, lj-large and enwiki datasets, respectively.

3.3 Multi-GPU Performance

Figure 10 shows the experimental results of training GCN
and GraphSAGE against a real-world dataset enwiki with
a different number of GPUs. Both DGL and PaGraph
achieves higher throughput numbers when more GPUs are
in-use. However, in general, PaGraph out-performs DGL
and shows better scalability w.r.t different hardware config-
urations, e.g., PaGraph outperforms DGL by up to 2.4×(4
GPUs for GCN). We further evaluate the performance of
PaGraph on multiple GPUs to show its effectiveness on dif-
ferent algorithm optimizations. For this purpose, we zoom
in on the performance numbers when using 2 GPUs. Pa-
Graph achieves the performance of 2.1× to 5.6× over DGL
across all datasets. With preprocessing optimization, Pa-
Graph can achieve speedups from 2.8× to 8.5× over DGL.
The reasons for the notable speedups are two-fold. First,
multiple GPUs provide more available memory for caching,
thus can achieve a higher cache hit ratio and lower data
loading cost. To confirm this, we also test the performance
of GCN on enwiki with a total cache size fixed 6 GB on four
GPUs. It shows that the speedup on 4-GPU is only 3.7×,
23% lower than the speedup achieved without the limitation
of cache size. Second, in all tested cases, data loading runs
faster than computation, therefore, our pipeline mechanism
completely hides it into the computation.

4 CONCLUSIONS

To accelerate GNN training performance on large graphs, we
present PaGraph, a general sampling-based training scheme
that leverages the combination of GNN computation-aware
caching and graph partition.

Efficient Data Loader for Fast Sampling-based GNN Training on Large Graphs

REFERENCES

Abbas, Z., Kalavri, V., Carbone, P., and Vlassov, V. Stream-
ing graph partitioning: an experimental study. In Proceed-
ings of the VLDB Endowment, volume 11, pp. 1590–1603.
VLDB Endowment, 2018.

Bai, Y., Li, C., Lin, Z., Wu, Y., Miao, Y., Liu, Y., and
Xu, Y. Efficient data loader for fast sampling-based gnn
training on large graphs. IEEE Transactions on Parallel
& Distributed Systems, (01):1–1, 2021.

Chen, J., Ma, T., and Xiao, C. FastGCN: fast learning with
graph convolutional networks via importance sampling.
In International Conference on Learning Representations
(ICLR), 2018a.

Chen, J., Zhu, J., and Song, L. Stochastic Training of Graph
Convolutional Networks with Variance Reduction. In
International Conference on Machine Learning (ICML),
pp. 941–949, 2018b.

Chrobak, M. and Noga, J. LRU is better than FIFO. Algo-
rithmica, 23(2):180–185, 1999.

DGL Team. DGL Large-Scale Training Tutorial.
https://docs.dgl.ai/tutorials/models/
5_giant_graph/2_giant.html, 2019. accessed,
Jan-2020.

Gonzalez, J. E., Low, Y., Gu, H., Bickson, D., and Guestrin,
C. Powergraph: Distributed graph-parallel computation
on natural graphs. In Proceedings of the 10th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI), pp. 17–30, 2012.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive rep-
resentation learning on large graphs. In Advances in
Neural Information Processing Systems (NeurIPS), pp.
1024–1034, 2017.

Huang, W., Zhang, T., Rong, Y., and Huang, J. Adap-
tive sampling towards fast graph representation learning.
In Advances in Neural Information Processing Systems
(NeurIPS), pp. 4558–4567, 2018.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations (ICLR), 2017.

KONECT. Wikipedia links, English network
dataset – KONECT, April 2017. URL http:
//konect.uni-koblenz.de/networks/
wikipedia_link_en.

Lin, Z., Li, C., Miao, Y., Liu, Y., and Xu, Y. Pagraph: Scal-
ing gnn training on large graphs via computation-aware
caching. In Proceedings of the 11th ACM Symposium on
Cloud Computing, pp. 401–415, 2020.

Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P.,
and Bhattacharjee, B. Measurement and Analysis of
Online Social Networks. In Proceedings of the Internet
Measurement Conference (IMC), 2007.

NVIDIA Corporation. Nvidia nvprof. https://docs.
nvidia.com/cuda/profiler-users-guide/
index.html, 2007. accessed, Jan-2020.

PyTorch Team. PyTorch Profiler. https:
//pytorch.org/tutorials/recipes/
recipes/profiler.html, 2017. accessed,
May-2020.

Yang, J. and Leskovec, J. Defining and evaluating network
communities based on ground-truth. Knowledge and
Information Systems (KAIS), 42(1):181–213, 2015.

Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., and Sun,
M. Graph neural networks: A review of methods and
applications. arXiv preprint arXiv:1812.08434, 2018.

Zhu, R., Zhao, K., Yang, H., Lin, W., Zhou, C., Ai, B.,
Li, Y., and Zhou, J. AliGraph: A Comprehensive
Graph Neural Network Platform. In Proceedings of the
VLDB Endowment, volume 12, pp. 2094–2105. VLDB
Endowment, August 2019. doi: 10.14778/3352063.
3352127. URL https://doi.org/10.14778/
3352063.3352127.

https://docs.dgl.ai/tutorials/models/5_giant_graph/2_giant.html
https://docs.dgl.ai/tutorials/models/5_giant_graph/2_giant.html
http://konect.uni-koblenz.de/networks/wikipedia_link_en
http://konect.uni-koblenz.de/networks/wikipedia_link_en
http://konect.uni-koblenz.de/networks/wikipedia_link_en
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://pytorch.org/tutorials/recipes/recipes/profiler.html
https://pytorch.org/tutorials/recipes/recipes/profiler.html
https://pytorch.org/tutorials/recipes/recipes/profiler.html
https://doi.org/10.14778/3352063.3352127
https://doi.org/10.14778/3352063.3352127

