
DIRECTIONAL GRAPH NETWORKS

Dominique Beaini * 1 Saro Passaro * 2 Vincent Létourneau 1 William L. Hamilton 3 Gabriele Corso 2

Pietro Liò 2

ABSTRACT
The lack of anisotropic kernels in graph neural networks (GNNs) strongly limits their expressiveness, contribut-
ing to well-known issues such as over-smoothing. To overcome this limitation, we propose the first globally con-
sistent anisotropic kernels for GNNs, allowing for graph convolutions that are defined according to topologicaly-
derived directional flows. First, by defining a vector field in the graph, we develop a method of applying direc-
tional derivatives and smoothing by projecting node-specific messages into the field. Then, we propose the use of
the Laplacian eigenvectors as such vector field. We show that the method generalizes CNNs on an n-dimensional
grid and is provably more discriminative than standard GNNs regarding the Weisfeiler-Lehman 1-WL test. We
evaluate our method on different standard benchmarks and see a relative error reduction of 8% on the CIFAR10
graph dataset and 11% to 32% on the molecular ZINC dataset, and precision of 1.6% on the MolPCBA dataset.

1 INTRODUCTION

One of the most important distinctions between convolu-
tional neural networks (CNNs) and graph neural networks
(GNNs) is that CNNs allow for any convolutional kernel,
while most GNN methods are limited to symmetric ker-
nels (also called isotropic kernels) (Kipf & Welling, 2016;
Gilmer et al., 2017). There are some implementations
of asymmetric kernels using gated mechanisms (Bresson
& Laurent, 2017; Veličković et al., 2017), motif attention
(Peng et al., 2019), edge features (Gilmer et al., 2017),
port numbering (Sato et al., 2019) or the 3D structure of
molecules (Klicpera et al., 2019).

However, to the best of our knowledge, there are currently
no methods that allow asymmetric graph kernels that are
dependent on the full graph structure or directional flows.
They either depend on local structures or local features.
This is in opposition to images, which exhibit canonical
directions: the horizontal and vertical axes. The absence of
an analogous concept in graphs makes it difficult to define
directional message passing and to produce an analogue of
the directional frequency filters (or Gabor filters) widely
present in image processing (Olah et al., 2020).

We propose a novel idea for GNNs: use vector fields in the

*Equal contribution 1Valence Discovery, Montreal, Canada
2Department of Computer Science and Technology, Univer-
sity of Cambridge, Cambridge, UK 3MILA, McGill Uni-
versity, Montreal, Canada. Correspondence to: Dominique
Beaini <dominique@valencediscovery.com>, Saro Passaro
<sp976@cam.ac.uk>.

Proceedings of the 4 th MLSys Conference, San Jose, CA, USA,
2021. Copyright 2021 by the author(s).

graph to define directions for the propagation of informa-
tion. An overview of this framework is presented in figure
1. Using this approach, the usual message-passing struc-
ture of a GNN is projected onto globally-defined directions
so that the contribution of each neighbouring node nv is
weighted by its alignment with the vector fields at the re-
ceiving node nu. This allows to propagate information via
directional derivatives or smoothing of the features.

In order to define globally consistent directional fields over
general graphs, we propose to use the gradients of the low-
frequency eigenvectors φk of the graph Laplacian, since
they are known to capture key information about the global
structure of graphs (Bronstein et al., 2017; Chung et al.,
1997). In particular, these eigenvectors can be used to de-
fine optimal partitions of the nodes in a graph, to give a nat-
ural ordering (Levy, 2006), and to find the dominant direc-
tions of the graph diffusion process (Chung & Yau, 2000).
Further, we show that they generalize the horizontal and
vertical directional flows in a grid (see figure 2), allowing
them to guide the aggregation and mimic the asymmetric
and directional kernels present in computer vision. In fact,
we demonstrate mathematically that our work generalizes
CNNs, by reproducing all convolutional kernels of radius
R in an n-dimensional grid, while also bringing the power-
ful data augmentation capabilities of reflection, rotation or
distortion of the directions. Additionally, we also prove that
our directional graph networks (DGNs) are more discrim-
inative than standard GNNs in regards to the Weisfeiler-
Lehman 1-WL test, confirming an increase of expressive-
ness.

We tested our method on 5 standard datasets from (Dwivedi

Directional Graph Networks

��

��

�� = ∇�� =

�� = ∇�� = ���
�

���
�

���
�

���
�

���
�

⋮
���

�

���
�

� � = concat

���� � �

���
� � �

���
� � �

⋮
���

� � �

���
� � �

� � = MLP � �

Graph

�

The a-directional
adjacency matrix �
is given as an input.
We then compute
the Laplacian matrix
�.

�: number of nodes

�: number of edges

The eigenvectors � of � are
computed and sorted such
that �� has the lowest non-
zero eigenvalue and �� has
the �-th lowest.

We compute the �-first
eigenvectors with a
complexity of � �� .

(e)(b) (c) (d) (f) (g)(a)

Pre-computed steps � ��

A graph with the node

features is given. � �

is the feature matrix
of the graph at the 0-
th GNN layer, of size
� × ��.

The aggregation

matrices ���,��
�,…,� are

taken from the pre-
computed steps.

Graph neural network steps � �� + ��

The gradient of � is a
function of the edges (a
matrix) such that
∇��� = �� − �� if the nodes

�, � are connected, or ∇��� =

0 otherwise.

If the graph has a known
direction, it can be encoded
as field �.

Each row �, : of the field � is
normalized by it’s �� norm.

���,: =
��,:

��.: �� + �

•��� is the directional smoothing matrix.

��� = ��

•��� is the directional derivative matrix.

��� �,: = ���,: − diag � ��:,�

� �,:

The aggregation matrices

���,��
�,…,� are used to aggregate

the features � � via the
matrix prodict ��. For ��� we
take the absolute value due to
the sign ambiguity of �.

� � is the column-
concatenation of all directional
and a-directional aggregations.

The complexity is � �� , or
� � if the aggregations are
parallelized.

This is the only step with
learned parameters.

Based on the GCN method,
each aggregation is followed
by a multi layer perceptron
(MLP) on all the features.

The MLP is applied on the

columns of � � , thus we
have a complexity of � �� .

• � � has �� columns

• � � has 2� + 1 ��

columns

• � � has �� columns

���
� ��,�

�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

� �

� → � + 1

� � → � ���

� � → � �

� � → � �

Next GNN
layer

max0-max
Node colormap

max0-max
Field matrix colormap

Input graph
Compute the first

� eigenvectors
Compute the

gradient
Create the aggregation

matrices �
Feature aggregation MLPInput graph

Figure 1. Overview of the steps required to aggregate messages in the direction of the eigenvectors.

et al., 2020) and (Hu et al., 2020), using two types of archi-
tectures, and either using or ignoring edge features, where
observed state-of-the-art results from the proposed DGN.

2 THEORETICAL DEVELOPMENT

2.1 Intuitive overview

One of the biggest limitations of current GNN methods
compared to CNNs is the inability to do message passing
in a specific direction such as the horizontal one in a grid
graph. In fact, it is difficult to define directions or coordi-
nates based solely on the shape of the graph.

The lack of directions strongly limits the discriminative
abilities of GNNs to understand local structures and sim-
ple feature transformations. Most GNNs are invariant to
the permutation of the neighbours’ features, so the nodes’
received signal is not influenced by swapping the features
of two neighbours. Therefore, several layers in a deep net-
work will be employed to understand these simple changes
instead of being used for higher level features, leading to
problematic phenomena such as a over-squashing (Alon &
Yahav, 2020).

In this work, one of the main contributions is the realisa-
tion that low-frequency eigenvectors of the Laplacian can
overcome this limitation by providing intuitive directional
flows over graphs. As a first example, taking a grid-shaped
graph of size N × M with N

2 < M < N , we find that
the eigenvector associated to the smallest non-zero eigen-
value increases in the direction of the width N and the sec-

ond one increases in the direction of the height M . This
property generalizes to n-dimensional grids and motivates
the use of gradients of Laplacian eigenvectors in general
graphs.

We empirically validated this intuition by looking at the
flow of the gradient of the eigenvectors for a variety of
graphs, as shown in figure 2. For example, in the Min-
nesota map, the first 3 non-constant eigenvectors produce
logical directions, namely South/North, suburb/city, and
West/East.

Another important contribution—also noted in figure 2—is
the ability to define any kind of directional flow based on
prior knowledge of the problem. Hence, instead of relying
on eigenvectors to find directions in a map, we can simply
use the cardinal directions or the rush-hour traffic flow.

2.2 Vector fields in a graph

Based on a recent review from (Bronstein et al., 2017), this
section presents the ideas of differential geometry applied
to graphs, with the goal of finding proper definitions of
scalar products, gradients and directional derivatives.

Let G = (V,E) be a graph with V the set of vertices and
E ⊂ V × V the set of edges. The graph is undirected
meaning that (i, j) ∈ E iff (j, i) ∈ E. Define the vector
spaces L2(V) and L2(E) as the set of maps V → R and
E → R with x,y ∈ L2(V) and F ,H ∈ L2(E) and scalar

Directional Graph Networks

Figure 2. Possible directional flows in different types of graphs. The node coloring is a potential map and the edges represent the gradient
of the potential with the arrows in the direction of the flow. The first 3 columns present the arcosine of the normalized eigenvectors
(acos φ̂) as node coloring, and their gradients represented as edge intensity. The last column presents examples of inductive bias
introduced in the choice of direction. (a) The eigenvectors 1 and 2 are the horizontal and vertical flows of the grid. (b) The eigenvectors
1 and 2 are the flow in the longest and second-longest directions. (c) The eigenvectors 1, 2 and 3 flow respectively in the South-North,
suburbs to the city center and West-East directions. We ignore φ0 since it is constant and has no direction.

products

〈x,y〉L2(V) : =
∑
i∈V

xiyi

〈F ,H〉L2(E) : =
∑

(i,j)∈E

F(i,j)H(i,j)

(1)

Think of E as the “tangent space” to V and of L2(E) as
the set of “vector fields” on the space V with each row Fi,:
representing a vector at the i-th node.

Define the pointwise scalar product as the map L2(E) ×
L2(E) → L2(V) taking 2 vector fields and returning their
inner product at each point of V , at the node i is defined by
equation 2.

〈F ,H〉i :=
∑

j:(i,j)∈E

Fi,jHi,j (2)

In equation 3, we define the gradient ∇ as a mapping
L2(V) → L2(E) and the divergence div as a mapping
L2(E) → L2(V), thus leading to an analogue of the di-
rectional derivative in equation 4.

(∇x)(i,j) := x(j)− x(i)

(divF)i :=
∑

j:(i,j)∈E

F(i,j)
(3)

Definition 1. The directional derivative of the function x
on the graph G in the direction of the vector field F̂ where
each vector is of unit-norm is

DF̂x(i) := 〈∇x, F̂ 〉i =
∑

j:(i,j)∈E

(x(j)− x(i))F̂i,j (4)

|F | will denote the absolute value of F and ||Fi,:||Lp the
Lp-norm of the i-th row of F . We also define the for-
ward/backward directions as the positive/negative parts of
the field F±.

2.3 Directional smoothing and derivatives

Next, we show how the vector field F is used to guide the
graph aggregation by projecting the incoming messages.
Specifically, we define the weighted aggregation matrices
Bav andBdx that allow to compute the directional smooth-
ing and directional derivative of the node features, as pre-
sented visually in figure 1-d.

The directional average matrixBav is the weighted ag-
gregation matrix such that all weights are positives and all
rows have an L1-norm equal to 1, as shown in equation 5
and theorem 2.1, with a proof in the appendix D.1.

Bav(F)i,: =
|Fi,:|

||Fi,:||L1 + ε
(5)

The variable ε is an arbitrarily small positive number used
to avoid floating-point errors. The L1-norm denominator
is a local row-wise normalization. The aggregator works
by assigning a large weight to the elements in the forward
or backward direction of the field, while assigning a small
weight to the other elements, with a total weight of 1.

Theorem 2.1 (Directional smoothing). The operation y =
Bavx is the directional average of x, in the sense that yu
is the mean of xv , weighted by the direction and amplitude
of F .

Directional Graph Networks

The directional derivative matrixBdx is defined in (6)
and theorem 2.2, with the proof in appendix D.2. Again,
the denominator is a local row-wise normalization but can
be replaced by a global normalization. diag(a) is a square,
diagonal matrix with diagonal entries given by a. The ag-
gregator works by subtracting the projected forward mes-
sage by the backward message (similar to a center deriva-
tive), with an additional diagonal term to balance both di-
rections.

Bdx(F)i,: = F̂i,: − diag
(∑

j

F̂:,j

)
i,:

F̂i,: =

(
Fi,:

||Fi,:||L1 + ε

) (6)

Theorem 2.2 (Directional derivative). Suppose F̂ have
rows of unit L1 norm. The operation y = Bdx(F̂)x is
the centered directional derivative of x in the direction of
F , in the sense of equation 4, i.e.

y = DF̂x =
(
F̂ − diag

(∑
j

F̂:,j

))
x

These aggregators are directional, interpretable and com-
plementary, making them ideal choices for GNNs. We dis-
cuss the choice of aggregators in more details in appendix
A, while also providing alternative aggregation matrices
such as the center-balanced smoothing, the forward-copy,
the phantom zero-padding, and the hardening of the aggre-
gators using softmax/argmax on the field.

2.4 Gradient of the Laplacian eigenvectors as
interpretable vector fields

In this section we give theoretical support for the choice of
gradients of the eigenfunctions of the Laplacian as sensi-
ble vectors along which to do directional message passing
since they are interpretable and allow to reduce the over-
smoothing. This section gives a theoretical ground to the
intuitive directions presented in figure 2, and is the motiva-
tion behind steps (b-c) in figure 1.

As usual the combinatorial, degree-normalized and sym-
metric normalized Laplacian are defined as

L = D −A, Lnorm = D−1L, Lsym = D−
1
2LD−

1
2

(7)
The eigenvectors of these matrices are known to capture
many essential properties of graphs, making them a natural
foundation for directional message passing. Indeed, they
hold such rich information about graph structure that their
study is the focus of the mathematical subfield of spectral
graph theory (Chung et al., 1997) and can be used to study
the graph structure and Fourier modes (Hamilton, 2020).

In the next paragraphs, we will prove that following the
gradient of the eigenvectors allows to effectively reduce the
heat-kernel distance between pairs of nodes.

Given a Markov process of k steps defined by the transition
matrices W k, j = 1, ..., k with W = D−1A, we can
define a continuous time random walk on the same graph
below. Here, t is the continuous time and pk(x, y) is the
probability to transition from x to y in k steps.

In (Barlow, 2017), the following identity is shown

qt(x, y) =

∞∑
n=0

e−ttk

k!
pk(x, y)

Or in matrix form qt = et(W−I) = e−tLnorm . This transi-
tion probability is also called the continuous time heat ker-
nel because it satisfies the continuous time heat equation on
graphs d

dtqt = −Lnormqt. In (Coifman & Lafon, 2006) the
following distance is defined
Definition 2 (Diffusion distance). The diffusion distance at
time t between the nodes x, y is

dt(x, y) :=

(∑
z∈V

(
qt(x, z)− qt(y, z)

)2) 1
2

(8)

Definition 3 (Gradient step). Suppose the two neighboring
nodes x and z are such thatφ(z)−φ(x) is maximal among
the neighbors of x, then we will say z is obtained from x by
taking a step in the direction of the gradient∇φ.
Theorem 2.3 (Gradient steps reduce diffusion distance).
Let x, y be nodes such that φ1(x) < φ1(y). Let x′ be the
node obtained from x by taking one step in the direction of
∇φ1, then there is a constant C such that for C ≤ t we
have

dt(x
′, y) < dt(x, y).

With the reduction in distance being proportional to e−λ1 .

Hence, we see that moving from node x to node x′ by fol-
lowing the gradient of the eigenvector φ1 is guaranteed to
reduce the heat kernel distance with a destination node y.

In the context of GNNs, Theorem 2.3 also has implications
for the well-known problems of over-smoothing and over-
squashing (Alon & Yahav, 2020; Hamilton, 2020), with the
message reaching the stationary distribution of a random
walk (Hamilton, 2020). Theorem 2.3 highlights how the
DGN approach can alleviate these issues, since the Lapla-
cian eigenfunctions reveal directions that allow efficient
propagation of information between distant nodes instead
of following a diffusion process.

Finally it is interesting to note that by selecting differ-
ent eigenvectors as basis of directions, our method fur-
ther aligns with a theorem that multiple independent aggre-
gators are needed to distinguish neighbourhoods of nodes
with continuous features (Corso et al., 2020).

Directional Graph Networks

2.5 Generalization of the convolution on a grid

In this section we show that our method generalizes CNNs
by allowing to define any radius-R convolutional kernels
in grid-shaped graphs. The radius-R kernel at node u is
a convolutional kernel that takes the weighted sum of all
nodes v at a distance d(u, v) ≤ R.

Consider the lattice graph Γ of size N1 × N2 × ... × Nn
where each vertices are connected to their direct non-
diagonal neighbour. We know from Lemma D.1 that, for
each dimension, there is an eigenvector that is only a func-
tion of this specific dimension. For example, the lowest
frequency eigenvector φ1 always flows in the direction of
the longest length. Hence, the Laplacian eigenvectors of
the grid can play a role analogous to the axes in Euclidean
space, as shown in figure 2.

With this knowledge, we show in theorem 2.4 (proven in
D.6), that we can generalize all convolutional kernels in an
n-dimensional grid. This is a strong result since it demon-
strates that our DGN framework generalizes CNNs when
applied on a grid, thus closing the gap between GNNs and
the highly successful CNNs on image tasks.

Theorem 2.4 (Generalization radius-R convolutional ker-
nel in a lattice). For an n-dimensional lattice, any con-
volutional kernel of radius R can be realized by a linear
combination of directional aggregation matrices and their
compositions.

2.6 Comparison with Weisfeiler-Lehman (WL) test

We also compare the expressiveness of the Directional
Graph Networks with the classical WL graph isomorphism
test which is often used to classify the expressivity of graph
neural networks (Xu et al., 2018). In theorem 2.5 (proven
in appendix D.7) we show that DGNs are capable of distin-
guishing pairs of graphs that the 1-WL test (and so ordinary
GNNs) cannot differentiate.

Theorem 2.5 (Comparison with 1-WL test). DGNs us-
ing the mean aggregator, any directional aggregator of the
first Laplacian eigenvector and injective degree-scalers are
strictly more powerful than the 1-WL test.

3 IMPLEMENTATION

We implemented the models using the DGL and Py-
Torch libraries and we provide the code at the address
https://github.com/Saro00/DGN. We test our method on
standard benchmarks from (Dwivedi et al., 2020) and (Hu
et al., 2020), namely ZINC, CIFAR10, PATTERN, Mol-
HIV and MolPCBA with more details on the datasets and
how we enforce a fair comparison in appendix C.2.

For the empirical experiments we inserted our proposed ag-
gregation method in two different type of message passing

architectures used in the literature: a simple convolutional
architecture similar to the one present in GCN (equation 9a)
(Kipf & Welling, 2016) and a more complex and general
one typical of MPNNs (9b) (Gilmer et al., 2017) with or
without edge features eji. The time complexity of our ap-
proach is O(Em), which is identical to PNA (Corso et al.,
2020), where E is the number of edges and m the number
of aggregators, with an additional O(Ek) to pre-compute
the k-first eigenvectors, as explained in the appendix C.3.

X
(t+1)
i = U

(⊕
(j,i)∈E

X
(t)
j

)
(9a)

X
(t+1)
i = U

(
X

(t)
i ,

⊕
(j,i)∈E

M
(
X

(t)
i , X

(t)
j , eji︸︷︷︸

optional

))
(9b)

Here,
⊕

is an operator which concatenates the results of
multiple aggregators, X is the node features, M is a linear
transformation and U a multiple layer perceptron (MLP).
This simple architecture of equation 9a is observed visually
in steps (f-g) of figure 1.

We tested the directional aggregators across the datasets
using the gradient of the first k eigenvectors ∇φ1,...,k as
the underlying vector fields. Here, k is a hyperparameter,
usually 1 or 2, but could be bigger for high-dimensional
graphs. To deal with the arbitrary sign of the eigenvec-
tors, we take the absolute value of the result of equation 6,
making it invariant to a reflection of the field. In case of
a disconnected graph, φi is the i-th eigenvector of each
connected component. Despite the numerous aggregators
proposed in appendix A, onlyBdx andBav are tested em-
pirically.

The metrics used to measure the performance of a model
depend are enforced for each dataset and provided by
(Dwivedi et al., 2020) and (Hu et al., 2020). In particular,
we use the mean absolute error (MAE), the accuracy (acc),
the area under the receiver operating curve (ROC-AUC),
and the average precision (AP).

4 RESULTS AND DISCUSSION

Directional aggregation Using the benchmarks intro-
duced in section 3, we present in figure 3 a fair compar-
ison of various aggregation strategies using the same pa-
rameter budget and hyperparameters. We see a consistent
boost in the performance for simple, complex and complex
with edges models using directional aggregators compared
to the mean-aggregator baseline.

With our theoretical analysis in mind, we expected to per-
form well on PATTERN since the flow of the first eigenvec-
tors are meaningful directions in a stochastic block model
(i.e., these eigenvectors tend to correlate with community

https://github.com/Saro00/DGN

Directional Graph Networks

ZINC PATTERN CIFAR10 MolHIV MolPCBA

Aggregators
Simple Complex Complex-E Simple Complex Simple Complex Simple Complex Complex-E

MAE MAE MAE % acc % acc % acc % acc % ROC-AUC % AP % AP

mean 0.316 0.353 0.262 80.77 83.34 55.9 62.8 75.1 26.04 26.38

mean pos1 0.349 0.332 0.297 80.76 83.74 75.8 26.97 27.50

mean pos1 pos2 0.344 0.330 0.284 84.51 81.25 76.1 26.03 25.65

mean dx1 0.296 0.233 0.191 84.22 83.44 78.0 26.79 27.91

mean dx1 dx2 0.337 0.271 0.205 81.61 86.62 52.9 69.8 76.5 27.16 26.55

mean av1 0.317 0.332 0.276 84.54 83.21 78.4 25.97 26.66

mean av1 av2 0.367 0.332 0.260 85.12 85.38 60.6 65.1 77.1 25.61 26.67

mean dx1 av1 0.290 0.245 0.192 85.17 86.68 79.0 26.40 27.47

Best

Worst

Figure 3. Test set results using a parameter budget of ∼ 100k with the same hyperparameters as (Corso et al., 2020), except MolPCBA
with a budget of ∼ 7M . The low-frequency Laplacian eigenvectors are used to define the directions, except for CIFAR10 that uses the
coordinates of the image. For brevity, we denote dxi and avi as the directional derivative Bi

dx and smoothing Bi
av aggregators of the

i-th direction. We also denote posi as the i-th eigenvector used as positional encoding for the mean aggregator.

ZINC PATTERN CIFAR10 MolHIV MolPCBA

Model
No edge features Edge features No edge features No edge features Edge features No edge features All models

MAE MAE % acc % acc % acc % ROC-AUC % AP

GCN 0.469±0.002 65.880±0.074 54.46±0.10 76.06±0.97 * 20.20±0.24 *

GIN 0.408±0.008 85.590±0.011 53.28±3.70 75.58±1.40 * 22.66±0.28 *

GraphSage 0.410±0.005 50.516±0.001 66.08±0.24

GAT 0.463±0.002 75.824±1.823 65.48±0.33

MoNet 0.407±0.007 85.482±0.037 53.42±0.43

GatedGCN 0.422±0.006 0.363±0.009 84.480±0.122 69.19±0.28 69.37±0.48

PNA 0.320±0.032 0.188±0.004 86.567±0.075 70.46±0.44 70.47±0.72 79.05±1.32 * 28.38±0.35 *

DGN 0.219±0.010 0.168±0.003 86.680±0.034 72.70±0.54 72.84±0.42 79.70±0.97 28.85±0.30 *

Figure 4. Fine-tuned results of the DGN model against models from (Dwivedi et al., 2020) and (Hu et al., 2020): GCN (Kipf & Welling,
2016), GraphSage (Hamilton et al., 2017), GIN (Xu et al., 2018), GAT (Veličković et al., 2017), MoNet (Monti et al., 2017), GatedGCN
(Bresson & Laurent, 2017) and PNA (Corso et al., 2020). All the models use ∼ 100k parameters, except those with * who use 300k to
6.5M . In ZINC the DGN aggregators are {mean, dx1, max, min}, in PATTERN {mean, dx1, av1}, in CIFAR10 {mean, dx1, dx2, max},
in MolHIV {mean, dx1, av1, max, min}, in MolPCBA {mean, sum, max, dx1}.

membership). The results match our expectations, outper-
forming all the previous models.

In particular, we see a significant improvement in the
molecular datasets (ZINC, MolHIV and MolPCBA) when
using the directional aggregators, especially for the deriva-
tive aggregation B1

dx (noted dx1 in figure 3). We believe
this is due to the capacity to efficiently move messages
across opposite parts of the molecule and to better un-
derstand the role of atom pairs. We further believe that
the derivative aggregator is better able to capture high-
frequency directional signals, similarly to the Gabor filters
in computer vision.

Further, the thesis that DGNs can bridge the gap between
CNNs and GNNs is supported by the clear improvements
on CIFAR10 over the baselines.

Improvements over positional embeddings. In the work
by (Dwivedi et al., 2020), they proposed the use of posi-
tional encoding of the eigenvectors. However, our experi-
ments with the positional encoding of the first 2 non-trivial
eigenvectors, noted pos1, pos2 in figure 3, showed no clear
improvement on most datasets. In fact, Dwivedi et al. noted
that many eigenvectors and high network depths are re-
quired for improvements, yet we outperform their results
with fewer parameters, less depth, and only 1-2 eigenvec-
tors, further motivating their use as directional flows in-

stead of positional encoding.

Comparison to the literature. In order to compare our
model with the literature, we fine-tuned it on the various
datasets and we report its performance in figure 4. We ob-
serve that DGN provides significant improvement across
all benchmarks, highlighting the importance of anisotropic
kernels that are dependant on the graph topology.

5 CONCLUSION

The proposed DGN method allows to address many prob-
lems of GNNs, including the lack of anisotropy, the low
expressiveness, the over-smoothing and over-squashing.
For the first time in graph networks, we generalize the
directional properties of CNNs and their data augmenta-
tion capabilities. Based on the intuitive idea that the low-
frequency eigenvectors of the graph Laplacian gives an in-
terpretable directional flow, we backed our work by a set of
strong theoretical results showing that these eigenvectors
are important in connecting nodes that are far away and
improving the expressiveness in regards to the WL-test.

We further discuss avenues for future work, including the
hardening of the aggregators A.5, the zero-padding at the
boundaries A.7, the implementation of radius-R kernels
A.8, and the study of directional data augmentation B.1.

Directional Graph Networks

REFERENCES

Alon, U. and Yahav, E. On the bottleneck of
graph neural networks and its practical implications.
arXiv:2006.05205 [cs, stat], 2020. URL http://
arxiv.org/abs/2006.05205.

Barlow, M. T. Random Walks and Heat Kernels on
Graphs. London Mathematical Society Lecture Note Se-
ries. Cambridge University Press, 2017.

Bresson, X. and Laurent, T. Residual gated graph convnets.
arXiv preprint arXiv:1711.07553, 2017.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and
Vandergheynst, P. Geometric deep learning: going be-
yond euclidean data. IEEE Signal Processing Magazine,
34(4):18–42, 2017. ISSN 1053-5888, 1558-0792. doi:
10.1109/MSP.2017.2693418. URL http://arxiv.
org/abs/1611.08097.

Chung, F. and Yau, S. T. Discrete green’s functions.
Journal of Combinatorial Theory, Series A, 91(1):191–
214, 2000. ISSN 0097-3165. doi: 10.1006/jcta.2000.
3094. URL http://www.sciencedirect.com/
science/article/pii/S0097316500930942.

Chung, F., Graham, F., on Recent Advances in Spectral
Graph Theory, C. C., (U.S.), N. S. F., Society, A. M.,
and of the Mathematical Sciences, C. B. Spectral Graph
Theory. CBMS Regional Conference Series. Confer-
ence Board of the mathematical sciences, 1997. ISBN
9780821803158. URL https://books.google.
ca/books?id=4IK8DgAAQBAJ.

Coifman, R. R. and Lafon, S. Diffusion maps.
Applied and Computational Harmonic Analy-
sis, 21(1):5–30, 2006. ISSN 1063-5203. doi:
https://doi.org/10.1016/j.acha.2006.04.006. URL
https://www.sciencedirect.com/
science/article/pii/S1063520306000546.
Special Issue: Diffusion Maps and Wavelets.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Veličković,
P. Principal neighbourhood aggregation for graph nets.
arXiv preprint arXiv:2004.05718, 2020.

Doshi, V. and Eun, D. Y. Fiedler vector approximation
via interacting random walks. arXiv:2002.00283 [math],
2000. doi: 10.1145/3379487. URL http://arxiv.
org/abs/2002.00283.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and
Bresson, X. Benchmarking graph neural networks. arXiv
preprint arXiv:2003.00982, 2020.

Fiedler, M. Algebraic connectivity of graphs. Czechoslo-
vak Mathematical Journal, 23:298–305, 01 1973. doi:
10.21136/CMJ.1973.101168.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In Proceedings of the 34th International Confer-
ence on Machine Learning-Volume 70, pp. 1263–1272.
JMLR. org, 2017.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Advances in neural
information processing systems, pp. 1024–1034, 2017.

Hamilton, W. L. Graph Representation Learning. Morgan
and Claypool, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687, 2020.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate
shift. arXiv preprint arXiv:1502.03167, 2015.

Islam, M. A., Jia, S., and Bruce, N. D. B. How much
position information do convolutional neural networks
encode? arXiv:2001.08248 [cs], 2020. URL http:
//arxiv.org/abs/2001.08248.

Jin, W., Barzilay, R., and Jaakkola, T. Junction tree
variational autoencoder for molecular graph generation.
arXiv:1802.04364 [cs, stat], 2018. URL http://
arxiv.org/abs/1802.04364.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Klicpera, J., Groß, J., and Günnemann, S. Directional
message passing for molecular graphs. ICLR2020,
2019. URL https://openreview.net/forum?
id=B1eWbxStPH.

Knyazev, B., Taylor, G. W., and Amer, M. Understanding
attention and generalization in graph neural networks. In
Advances in Neural Information Processing Systems, pp.
4204–4214, 2019.

Kondor, R., Son, H. T., Pan, H., Anderson, B., and
Trivedi, S. Covariant compositional networks for learn-
ing graphs. arXiv preprint arXiv:1801.02144, 2018.

Krizhevsky, A., 2009.

http://arxiv.org/abs/2006.05205
http://arxiv.org/abs/2006.05205
http://arxiv.org/abs/1611.08097
http://arxiv.org/abs/1611.08097
http://www.sciencedirect.com/science/article/pii/S0097316500930942
http://www.sciencedirect.com/science/article/pii/S0097316500930942
https://books.google.ca/books?id=4IK8DgAAQBAJ
https://books.google.ca/books?id=4IK8DgAAQBAJ
https://www.sciencedirect.com/science/article/pii/S1063520306000546
https://www.sciencedirect.com/science/article/pii/S1063520306000546
http://arxiv.org/abs/2002.00283
http://arxiv.org/abs/2002.00283
http://arxiv.org/abs/2001.08248
http://arxiv.org/abs/2001.08248
http://arxiv.org/abs/1802.04364
http://arxiv.org/abs/1802.04364
https://openreview.net/forum?id=B1eWbxStPH
https://openreview.net/forum?id=B1eWbxStPH

Directional Graph Networks

Lanczos, C. An iteration method for the solution of the
eigenvalue problem of linear differential and integral op-
erators. United States Governm. Press Office Los Ange-
les, CA, 1950.

Levy, B. Laplace-beltrami eigenfunctions towards an al-
gorithm that ”understands” geometry. In IEEE Interna-
tional Conference on Shape Modeling and Applications
2006 (SMI’06), pp. 13–13, 2006. doi: 10.1109/SMI.
2006.21.

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y. In-
variant and equivariant graph networks. arXiv preprint
arXiv:1812.09902, 2018.

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J.,
and Bronstein, M. M. Geometric deep learning on graphs
and manifolds using mixture model cnns. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5115–5124, 2017.

O’Gara, S. and McGuinness, K. Comparing data aug-
mentation strategies for deep image classification. Ses-
sion 2: Deep Learning for Computer Vision, 2019.
doi: http://doi.org10.21427/148b-ar75. URL https:
//arrow.tudublin.ie/impstwo/7.

Olah, C., Cammarata, N., Schubert, L., Goh, G.,
Petrov, M., and Carter, S. An overview of early
vision in InceptionV1. Distill, 5(4):e00024.002,
2020. ISSN 2476-0757. doi: 10.23915/distill.
00024.002. URL https://distill.pub/2020/
circuits/early-vision.

Peng, H., Li, J., Gong, Q., Wang, S., Ning, Y., and Yu,
P. S. Graph convolutional neural networks via motif-
based attention. arXiv:1811.08270 [cs], 2019. URL
http://arxiv.org/abs/1811.08270.

Sato, R., Yamada, M., and Kashima, H. Approximation
ratios of graph neural networks for combinatorial prob-
lems. arXiv preprint arXiv:1905.10261, 2019.

Shorten, C. and Khoshgoftaar, T. M. A survey on image
data augmentation for deep learning. Journal of Big
Data, 6(1):60, 2019. ISSN 2196-1115. doi: 10.1186/
s40537-019-0197-0. URL https://doi.org/10.
1186/s40537-019-0197-0.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2017.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How
powerful are graph neural networks? arXiv preprint
arXiv:1810.00826, 2018.

https://arrow.tudublin.ie/impstwo/7
https://arrow.tudublin.ie/impstwo/7
https://distill.pub/2020/circuits/early-vision
https://distill.pub/2020/circuits/early-vision
http://arxiv.org/abs/1811.08270
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0

Directional Graph Networks

A APPENDIX - CHOICES OF DIRECTIONAL AGGREGATORS

This appendix helps understand the choice of Bav and Bdx in section 2.3 and presents different directional aggregators
that can be used as an alternative to the ones proposed.

A simple alternative to the directional smoothing and directional derivative operator is to simply take the forward/backward
values according to the underlying positive/negative parts of the field F , since it can effectively replicate them. However,
there are many advantage of using Bav,dx. First, one can decide to use either of them and still have an interpretable
aggregation with half the parameters. Then, we also notice that Bav,dx regularize the parameter by forcing the network
to take both forward and backward neighbours into account at each time, and avoids one of the neighbours becoming too
important. Lastly, they are robust to a change of sign of the eigenvectors since Bav is sign invariant and Bdx will only
change the sign of the results, which is not the case for forward/backward aggregations.

A.1 Visual interpretation of the aggregators

We further provide a visual interpretation of the Bav and Bdx aggregators in figure 5. Interestingly, we also note in
appendix A.2 thatBav andBdx yield respectively the mean and Laplacian aggregations when F is a vector field such that
all entries are constant Fij = ±C.

𝑭𝑣,𝑢3

𝑭𝑣,𝑢1
𝑭𝑣,𝑢2

Direc�onal smoothing aggrega�on 𝑩𝑎𝑣 𝑭 𝒙 Direc�onal deriva�ve aggrega�on 𝑩𝑑𝑥 𝑭 𝒙Graph features focused on the neighbourhood of 𝒏𝒗

𝑣: Node receiving the message
𝑢1,2,3: Neighbouring node
𝒙𝑢 : Feature at node 𝑢
𝑭𝑣,𝑢 : Direc�onal vector field between the node 𝑣 and 𝑢

Weighted forward
deriva�ve with 𝑢1

Weighted backward
deriva�ve with 𝑢2

Weighted backward
deriva�ve with 𝑢3+ +

Sum of the absolute weights

Figure 5. Illustration of how the directional aggregation works at a node nv , with the arrows representing the direction and intensity of
the field F .

A.2 Retrieving the mean and Laplacian aggregations

It is interesting to note that we can recover simple aggregators from the aggregation matrices Bav(F) and Bdx(F). Let
F be a vector field such that all edges are equally weighted Fij = ±C for all edges (i, j). Then, the aggregator Bav is
equivalent to a mean aggregation:

Bav(F)x = D−1Ax

Under the condition Fij = C, the differential aggregator is equivalent to a Laplacian operator L normalized using the
degreeD

Bdx(CA)x = D−1(A−D)x = −D−1Lx

A.3 Global field normalization

The proposed aggregators are defined with a row-wise normalized field

F̂i,: =
Fi,:

||Fi,:||LP

meaning that all the vectors are of unit-norm and the aggregation/message passing is done only according to the direction
of the vectors, not their amplitude. However, it is also possible to do a global normalization of the field F by taking a
matrix-norm instead of a vector-norm. Doing so will modulate the aggregation by the amplitude of the field at each node.
One needs to be careful since a global normalization might be very sensitive to the number of nodes in the graph.

A.4 Center-balanced aggregators

A problem arises in the aggregators Bdx and Bav proposed in equations 5 and 6 when there is an imbalance between the
positive and negative terms of F±. In that case, one of the directions overtakes the other in terms of associated weights.

Directional Graph Networks

An alternative is also to normalize the forward and backward directions separately, to avoid having either the backward or
forward direction dominating the message.

Bav−center(F)i,: =
F ′+i,: + F ′−i,:

||F ′+i,j + F ′−i,j ||L1

, F ′±i,: =
|F±i,: |

||F±i,: ||L1 + ε
(10)

The same idea can be applied to the derivative aggregator equation 11 where the positive and negative parts of the field
F± are normalized separately to allow to project both the forward and backward messages into a vector field of unit-norm.
F+ is the out-going field at each node and is used for the forward direction, while F− is the in-going field used for the
backward direction. By averaging the forward and backward derivatives, the proposed matrix Bdx-center represents the
centered derivative matrix.

Bdx-center(F)i,: = F ′i,: − diag

∑
j

F ′:,j


i,:

, F ′i,: =
1

2

 F+
i,:

||F+
i,:||L1 + ε︸ ︷︷ ︸

forward field

+
F−i,:

||F−i,: ||L1 + ε︸ ︷︷ ︸
backward field

 (11)

A.5 Hardening the aggregators

The aggregation matrices that we proposed, mainly Bdx and Bav depend on a smooth vector field F . At any given node,
the aggregation will take a weighted sum of the neighbours in relation to the direction of F . Hence, if the field Fv at a node
v is diagonal in the sense that it gives a non-zero weight to many neighbours, then the aggregator will compute a weighted
average of the neighbours.

Although there are clearly good reasons to have this weighted-average behaviour, it is not necessarily desired in every
problem. For example, if we want to move a single node across the graph, this behaviour will smooth the node at every
step. Instead, we propose below to soften and harden the aggregations by forcing the field into making a decision on the
direction it takes.

Soft hardening the aggregation is possible by using a softmax with a temperature T on each row to obtain the field
Fsofthard.

(Fsofthard)i,: = sign(Fi,:)softmax(T |Fi,:|) (12)

Hardening the aggregation is possible by using an infinite temperature, which changes the softmax functions into
argmax. In this specific case, the node with the highest component of the field will be copied, while all other nodes will be
ignored.

(Fhard)i,: = sign(Fi,:)argmax(|Fi,:|) (13)

An alternative to the aggregators above is to take the softmin/argmin of the negative part and the softmax/argmax of the
positive part.

A.6 Forward and backward copy

The aggregation matrices Bav and Bdx have the nice property that if the field is flipped (change of sign), the aggregation
gives the same result, except for the sign ofBdx. However, there are cases where we want to propagate information in the
forward direction of the field, without smoothing it with the backward direction. In this case, we can define the strictly
forward and strictly backward fields below, and use them directly with the aggregation matrices.

Fforward = F+ , Fbackward = F− (14)

Further, we can use the hardened fields in order to define a forward copy and backward copy, which will simply copy the
node in the direction of the highest field component.

Directional Graph Networks

Fforward copy = F+
hard , Fbackward copy = F−hard (15)

A.7 Phantom zero-padding

Some recent work in computer vision has shown the importance of zero-padding to improve CNNs by allowing the network
to understand it’s position relative to the border (Islam et al., 2020). In contrast, using boundary conditions or reflection
padding makes the network completely blind to positional information. In this section, we show that we can mimic the
zero-padding in the direction of the field F for both aggregation matricesBav andBdx.

Starting with the Bav matrix, in the case of a missing neighbour in the forward/backward direction, the matrix will com-
pensate by adding more weights to the other direction, due to the denominator which performs a normalization. Instead,
we would need the matrix to consider both directions separately so that a missing direction would result in zero padding.
Hence, we define Bav,0pad below, where either the F+ or F− will be 0 on a boundary with strictly in-going/out-going
field.

(Bav,0pad)i,: =
1

2

(
|F+
i,:|

||F+
i,:||L1 + ε

+
|F−i,: |

||F−i,: ||L1 + ε

)
(16)

Following the same argument, we define Bdx,0pad below, where either the forward or backward term is ignored. The
diagonal term is also removed at the boundary so that the result is a center derivative equal to the subtraction of the forward
term with the 0-term on the back (or vice-versa), instead of a forward derivative.

Bdx−0pad(F)i,: =


F ′+i,: if

∑
j F
′−
i,j = 0

F ′−i,: if
∑
j F
′+
i,j = 0

1
2

(
F ′+i,: + F ′−i,: − diag

(∑
j F
′+
:,j + F ′−:,j

)
i,:

)
, otherwise

F ′+i,: =
F+
i,:

||F+
i,:||L1 + ε

F ′−i,: =
F−i,:

||F−i,: ||L1 + ε

(17)

A.8 Extending the radius of the aggregation kernel

We aim at providing a general radius-R kernel BR that assigns different weights to different subsets of nodes nu at a
distance R from the center node nv .

First, we decompose the matrix B(F) into positive and negative parts B±(F) representing the forward and backward
steps aggregation in the field F .

B(F) = B+(F)−B−(F) (18)

Thus, definingB±fb(F)i,: =
F±
i,:

||Fi,:||Lp , we can find different aggregation matrices by using different combinations of walks
of radius R. First demonstrated for a grid in theorem 2.4, we generalize it in equation 19 for any graph G.

Definition 4 (General radius R n-directional kernel). Let Sn be the group of permutations over n elements with a set of
directional fields Fi.

BR :=
∑

V={v1,v2,...,vn}∈Nn
||V ||L1≤R, −R≤vi≤R︸ ︷︷ ︸

Any choice of walk V with at mostR steps
using all combinations of v1, v2, ..., vn

∑
σ∈Sn︸︷︷︸
optional

permutations

aV

N∏
j=1

(B
sgn(vσ(j))

fb (Fσ(j)))
|vσ(j)|

︸ ︷︷ ︸
Aggregator following the steps V , permuted by Sn

(19)

In this equation, n is the number of directional fields and R is the desired radius. V represents all the choices of walk
{v1, v2, ..., vn} in the direction of the fields {F1,F2, ...,Fn}. For example, V = {3, 1, 0,−2} has a radius R = 6, with 3
steps forward of F1, 1 step forward of F2, and 2 steps backward of F4. The sign of each B±fb is dependant to the sign of

Directional Graph Networks

vσ(j), and the power |vσ(j)| is the number of aggregation steps in the directional field Fσ(j). The full equation is thus the
combination of all possible choices of paths across the set of fields Fi, with all possible permutations. Note that we are
restricting the sum to vi having only a possible sign; although matrices don’t commute, we avoid choosing different signs
since it will likely self-intersect a lower radius walk. The permutations σ are required since, for example, the path up→
left is different (in a general graph) than the path left→ up.

This matrix BR has a total of
∑R
r=0(2n)r = (2n)R+1−1

2n−1 parameters, with a high redundancy since some permutations
might be very similar, e.g. for a grid graph we have that up → left is identical to left → up. Hence, we can replace
the permutation Sn by a reverse ordering, meaning that

∏N
j Bj = BN ...B2B1. Doing so does not perfectly generalize

the radius-R kernel for all graphs, but it generalizes it on a grid and significantly reduces the number of parameters to∑R
r=0

∑min(n,r)
l=1 2r

(
n
l

)(
r−1
l−1
)
.

A.9 Arcsine of the eigenvectors

Since the eigenvectors φi are equivalent to the Fourier basis and represent the waves in the graphs, then it is expected that
they behave similarity to sine/cosine waves when the graph is similar to a grid. This is further highlighted by the proof that
the eigenvectors of a grid are all sines/cosines in appendix D.4.

Hence, when we define the field F as F i = ∇φi, we must realize that the gradient will be lower near the minima/maxima
of the eigenvector, as it is the case with sine/cosine waves. In the paper, we cope with this problem by dividing by the norm
of the field ‖F ‖L1 in equations 5 and 6.

Another solution is to use the arcsine of the eigenvectors so that the function eigenvectors become similar to triangle
functions and the gradient is almost uniform. However, since the arcsine function works only in the range [−1, 1], then we
must first normalize the eigenvector by it’s maximum, as given by equation 20.

F iasin = ∇ arcsin

(
φi

max(|φi|)

)
(20)

B APPENDIX - DATA AUGMENTATION

B.1 Generalizing image augmentation to graphs

The simplest augmentation is the vector field flipping, which is done changing the sign of the field F , as stated in definition
5. This changes the sign ofBdx, but leavesBav unchanged.

Definition 5 (Reflection of the vector field). For a vector field F , the reflected field is −F .

Let F1,F2 be vector fields in a graph, with F̂1 and F̂2 being the field normalized such that each row has a unitary L2-
norm. Define the angle vector α by 〈(F̂1)i,:, (F̂2)i,:〉 = cos(αi). The vector field F̂⊥2 is the normalized component of F̂2

perpendicular to F̂1. The equation below defines F̂⊥2 . The next equation defines the angle

(F̂⊥2)i,: =
(F̂2 − 〈F̂1, F̂2〉F̂1)i,:

||(F̂2 − 〈F̂1, F̂2〉F̂1)i,:||

Notice that we then have the decomposition (F̂2)i,: = cos(αi)(F̂1)i,: + sin(αi)(F̂
⊥
2)i,:.

Definition 6 (Rotation of the vector fields). For F̂1 and F̂2 non-colinear vector fields with each vector of unitary length,
their rotation by the angle θ in the plane formed by {F̂1, F̂2} is

F̂ θ1 = F̂1diag(cos θ) + F̂⊥2 diag(sin θ)

F̂ θ2 = F̂1diag(cos(θ +α)) + F̂⊥2 diag(sin(θ +α))
(21)

Finally, the following augmentation has a similar effect to a wave distortion applied on images.

Definition 7 (Random distortion of the vector field). For vector field F and anti-symmetric random noise matrix R, its
randomly distorted field is F ′ = F +R ◦A.

Directional Graph Networks

B.2 Preliminary results of data augmentation

To evaluate the effectiveness of the proposed augmentation, we trained the models on a reduced version of the CIFAR10
dataset. The results in figure 6 show clearly a higher expressive power of the dx aggregator, enabling it to fit well the
training data. For a small dataset, this comes at the cost of overfitting and a reduced test-set performance, but we observe
that randomly rotating or distorting the kernels counteracts the overfitting and improves the generalization.

As expected, the performance decreases when the rotation or distortion is too high since the augmented graph changes
too much. In computer vision images similar to CIFAR10 are usually rotated by less than 30◦ (Shorten & Khoshgoftaar,
2019; O’Gara & McGuinness, 2019). Further, due to the constant number of parameters across models, less parameters
are attributed to the mean aggregation in the directional models, thus it cannot fit well the data when the rotation/distortion
is too strong since the directions are less informative. We expect large models to perform better at high angles.

0° 2° 5° 10° 20° 45°
Rotation angle

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Rotation Training
mean
dx
av

0° 2° 5° 10° 20° 45°
Rotation angle

0.48

0.50

0.52

Rotation Test

mean
dx
av

0% 1% 5% 10% 20% 40%
Percentage distortion

0.6

0.7

0.8

0.9
Distortion Training

mean
dx
av

0% 1% 5% 10% 20% 40%
Percentage distortion

0.48

0.50

0.52

Distortion Test

mean
dx
av

Figure 6. Accuracy of the various models using data augmentation with a complex architecture of∼ 100k parameters and trained on 10%
of the CIFAR10 training set (4.5k images). An angle of x corresponds to a rotation of the kernel by a random angle sampled uniformly
in (−x◦, x◦) using definition 6 with F1,2 being the gradient of the horizontal/vertical coordinates. A noise of 100x% corresponds to
a distortion of each eigenvector with a random noise uniformly sampled in (−x ·m,x ·m) where m is the average absolute value of
the eigenvector’s components. The mean baseline model is not affected by the augmentation since it does not use the underlining vector
field.

C APPENDIX - IMPLEMENTATION DETAILS

C.1 Choosing a basis of the Laplacian eigenspace

When using eigenvectors of the Laplacian φi to define directions in a graph, we need to keep in mind that there is never a
single eigenvector associated to an eigenvalue, but a whole eigenspace. If an eigenvalue has multiplicity of k, the associated
eigenspace has dimension k and any collection of k orthogonal vectors could be chosen as basis of that space and as vectors
for the definitions of the aggregation matricesB defined in the previous sections.

Disconnected graphs. When a graph is disconnected, then the eigenfunctions will simply be the combination of the
eigenfunctions of each connected components. Hence, one must consider φi as the i-th eigenvector of each component
when taken separately.

Normalizing the eigenvectors. For an eigenvalue of multiplicity 1, there are always two unit norm eigenvectors of opposite
sign, which poses a problem during the directional aggregation. We can make a choice of sign and later take the absolute
value (i.e. Bav in equation 5). An alternative that applies to multiplicities higher than 1 is to take samples of orthonormal
bases of the eigenspace and use each choice to augment the training (see section B.1).

Multiplicities greater than 1. Although multiplicities higher than one do happen for low-frequencies (square grids have
a multiplicity 2 for λ1) this is not common in “real-world graphs” since it suggests symmetries in the graph which are
uncommon. Furthermore, we found no λ1 multiplicity greater than 1 in the ZINC and PATTERN datasets. We further
discuss these rare cases and how to deal with them in appendix C.5.

Orthogonal directions. Although all φ are orthogonal, their gradients, used to define directions, are not always locally
orthogonal (e.g. there are many horizontal flows in the grid). This concern is left to be addressed in future work.

Directional Graph Networks

C.2 Benchmarks and datasets

We use a variety of benchmarks proposed by (Dwivedi et al., 2020) and (Hu et al., 2020) to test the empirical performance
of our proposed methods. In particular, to have a wide variety of graphs and tasks we chose:

1. ZINC, a graph regression dataset from molecular chemistry. The task is to predict a score that is a subtraction of
computed properties logP − SA, with logP being the computed octanol-water partition coefficient, and SA being
the synthetic accessibility score (Jin et al., 2018).

2. CIFAR10, a graph classification dataset from computer vision (Krizhevsky, 2009). The task is to classify the images
into 10 different classes, with a total of 5000 training image per class and 1000 test image per class. Each image has
32 × 32 pixels, but the pixels have been clustered into a graph of ∼ 100 super-pixels. Each super-pixel becomes a
node in an almost grid-shaped graph, with 8 edges per node. The clustering uses the code from (Knyazev et al., 2019),
and results in a different number of super-pixels per graph.

3. PATTERN, a node classification synthetic benchmark generated with Stochastic Block Models, which are widely
used to model communities in social networks. The task is to classify the nodes into 2 communities and it tests the
fundamental ability of recognizing specific predetermined subgraphs.

4. MolHIV, a graph classification benchmark from molecular chemistry. The task is to predict whether a molecule
inhibits HIV virus replication or not. The molecules in the training, validation and test sets are divided using a
scaffold splitting procedure that splits the molecules based on their two-dimensional structural frameworks.

5. MolPCBA, a graph classification benchmark from molecular chemistry. It consists of measured biological activities
of small molecules generated by high-throughput screening. The dataset consists of a total of 437,929 molecules
divided using a scaffold slitting procedure and a set of 128 properties to predict for each.

For the results in figure 3, our goal is to provide a fair comparison to demonstrate the capacity of our proposed aggregators.
Therefore, we compare the various methods on both types of architectures using the same hyperparameters tuned in previ-
ous works (Corso et al., 2020) for similar networks. The models vary exclusively in the aggregation method and the width
of the architectures to keep a set parameter budget. Following the indication of the benchmarks’ authors, we averaged the
performances of the models on 4 runs with different initialization seeds for the benchmarks from Dwivedi et al. (2020)
(ZINC, PATTERN and CIFAR10) and 10 runs for the ones from Hu et al. (2020) (MolHIV and MolPCBA1).

For the results in figure 4, we took the fine tuned results of other models from the corresponding public leaderboards by
Dwivedi et al. (2020) and Hu et al. (2020). For the DGN results we fine tuned the model taking the lowest validation loss
across runs with the following hyperparameters (you can also find the fine tuned commands in the documentation of the
code repository):

1. ZINC: weight decay ∈ {1 · 10−5, 10−6, 3 · 10−7}, aggregators ∈ {(mean, avg1), (mean, dx1), (mean, av1, dx1),
(mean,min,max, av1), (mean,min,max, dx1)}

2. CIFAR10: weight decay ∈ {3 · 10−6}, dropout ∈ {0.1, 0.3}, aggregators ∈ {(mean, av1, av2), (mean, dx1, dx2),
(mean, dx1, dx2, av1, av2), (mean,max,min, dx1, dx2), (mean,max,min, av1, av2)}

3. PATTERN: weight decay ∈ {0, 10−8}, architecture ∈ {simple, complex}, aggregators ∈ {(mean, av1),
(mean, dx1), (mean, av1, dx1)}

4. MolHIV: aggregators ∈ {(mean, dx1), (mean, av1), (mean, dx1, av1), (mean,max, dx1),
(mean,max, dx1, av1), (mean,max,min, av1, dx1)}, dropout ∈ {0.1, 0.3, 0.5}, L ∈ {4, 6}

5. for MolPCBA, given we did not start from any previously tuned architecture, we performed a line search
with the following hyperparameters: mix of aggregators ∈ {mean,max,min, sum, dx1, dx2, av1, av2}, dropout
∈ {0.1, 0.2, 0.3, 0.4}, L ∈ {4, 6, 8}, weight decay ∈ {10−7, 10−6, 3 · 10−6, 10−5, 3 · 10−5}, batch size ∈
{128.512.2048, 3072}, learning rate∈ {10−2, 10−3, 5·10−4, 2·10−4}, learning rate patience∈ {4, 6, 8}, learning rate
reduce factor ∈ {0.5, 0.8}, architecture type ∈ {simple, complex, towers}, edge features dimension ∈ {0, 8, 16, 32}

1For MolPCBA, due to the computational cost of running models in the large dataset and the relatively low variance, we only used 1
run for the results in figure 3, but 10 runs in those for figure 4

https://github.com/Saro00/DGN

Directional Graph Networks

In CIFAR10 it is impossible to numerically compute a deterministic vector field with eigenvectors due to the multiplicity
of λ1 being greater than 1. This is caused by the symmetry of the square image, and is extremely rare in real-world graphs.
Therefore, we used as underlying vector field the gradient of the coordinates of the image. Note that these directions are
provided in the nodes’ features in the dataset and available to all models, that they are co-linear to the eigenvectors of the
grid as per lemma D.1, and that they mimic the inductive bias in CNNs.

C.3 Implementation and computational complexity

Unlike several more expressive graph networks (Kondor et al., 2018; Maron et al., 2018), our method does not require
a computational complexity superlinear with the size of the graph. The calculation of the first k eigenvectors during
pretraining, done using Lanczos method (Lanczos, 1950) and the sparse module of Scipy, has a time complexity of O(Ek)
where E is the number of edges. During training the complexity is equivalent to a m-aggregator GNN O(Em) (Corso
et al., 2020) for the aggregation and O(Nm) for the MLP.

To all the architectures we added residual connections (He et al., 2016), batch normalization (Ioffe & Szegedy, 2015) and
graph size normalization (Dwivedi et al., 2020).

For some of the datasets with non-regular graphs, we combine the various aggregators with logarithmic degree-scalers as
in (Corso et al., 2020).

An important thing to note is that, for dynamic graphs, the eigenvectors need to be re-computed dynamically with the
changing edges. Fortunately, there are random walk based algorithms that can estimate φ1 quickly, especially for small
changes to the graph (Doshi & Eun, 2000). In the current empirical results, we do not work with dynamic graphs.

C.4 Running time

The precomputation of the first four eigenvectors for all the graphs in the datasets takes 38s for ZINC, 96s for PATTERN
and 120s for MolHIV on CPU. Table 1 shows the average running time on GPU for all the various model from figure 3. On
average, the epoch running time is 15% slower for the DGN compared to the mean aggregation, but a faster convergence
for DGN means that the total training time is on average 2% faster for DGN.

Table 1. Average running time for the non-fine tuned models from figure 3. Each entry represents average time per epoch / average total
training time. For the first four datasets, each of the models has a parameter budget ∼ 100k and was run on a Tesla T4 (15GB GPU).
The avg increase row is the average of the relative running time of all rows compared to the mean row, with a negative value meaning a
faster running time.

ZINC PATTERN
Aggregators Simple Complex Complex-E Simple Complex

mean 3.29s/1505s 3.58s/1584s 3.56s/1654s 153.1s/10154s 117.8s/9031s
mean dx1 3.86s/1122s 3.77s/1278s 4.22s/1371s 144.9s/8109s 127.2s/8417s

mean dx1 dx2 4.23s/1360s 4.55s/1560s 4.63s/1680s 153.3s/8057s 167.9s/9326s
mean av1 3.68s/1297s 3.84s/1398s 3.92s/1272s 128.0s/8680s 88.1s/7456s

mean av1 av2 3.95s/1432s 4.03s/1596s 4.07s/1721s 134.2s/8115s 170.4s/11114s
mean dx1 av1 3.89s/1079s 4.09s/1242s 4.58s/1510s 118.6s/6221s 144.2s/9112s
avg increase +19%/-16% +13%/-11% +20%/-9% -11%/-23% +18%/+1%

CIFAR10 MolHIV MolPCBA
Aggregators Simple Complex Simple Complex Complex-E

mean 83.6s/10526s 78.7s/10900s 11.4s/2189s 279s/30128s 356s/38126s
mean dx1 12.6s/2348s 304s/34129s 461s/43419s

mean dx1 dx2 98.4s/8405s 100.9s/5191s 14.1s/2345s 314s/36581s 334s/38363s
mean av1 12.2s/2177s 297s/30316s 436s/54545s

mean av1 av2 117.1s/12834s 89.5s/14481s 13.9s/2150s 315s/42297s 333s/36641s
mean dx1 av1 14.0s/2070s 326s/37523s 461s/59109s
avg increase +29%/+1% +21%/-10% +17%/+1% +12%/+20% +14%/+22%

Directional Graph Networks

C.5 Eigenvector multiplicity

The possibility to define equivariant directions using the low-frequency Laplacian eigenvectors is subject to the uniqueness
of those vectors. When the dimension of the eigenspaces associated with the lowest eigenvalues is 1, the eigenvectors are
defined up to a constant factor. In section 2.4, we propose the use of unit vector normalization and an absolute value to
eliminate the scale and sign ambiguity. When the dimension of those eigenspaces is greater than 1, it is not possible to
define equivariant directions using the eigenvectors.

Fortunately, it is very rare for the Laplacian matrix to have repeated eigenvalues in real-world datasets. We validate this
claim by looking at ZINC and PATTERN datasets where we found no graphs with repeated Fiedler vector and only one
graph out of 26k with multiplicity of the second eigenvector greater than 1.

When facing a graph that presents repeated Laplacian eigenvalues, we propose to randomly shuffle, during training time,
different eigenvectors randomly sampled in the eigenspace. This technique will act as a data augmentation of the graph
during training time allowing the network to train with multiple directions at the same time.

D APPENDIX - MATHEMATICAL PROOFS

D.1 Proof for theorem 2.1 (Directional smoothing)

The operation y = Bavx is the directional average of x, in the sense that yu is the mean of xv , weighted by the direction
and amplitude of F .

Proof. This should be a simple proof, that if we want a weighted average of our neighbours, we simply need to multiply
the weights by each neighbour, and divide by the sum of the weights. Of course, the weights should be positive.

D.2 Proof for theorem 2.2 (Directional derivative)

Suppose F̂ have rows of unit L1 norm. The operation y = Bdx(F̂)x is the centered directional derivative of x in the
direction of F , in the sense of equation 4, i.e.

y = DF̂x =
(
F̂ − diag

(∑
j

F̂:,j

))
x

Proof. Since F rows have unit L1 norm, F̂ = F . The i-th coordinate of the vector
(
F − diag

(∑
j F:,j

))
x is

Fx− diag

∑
j

F

x

i

=
∑
j

Fi,jx(j)−

∑
j

Fi,j

x(i)

=
∑

j:(i,j)∈E

(x(j)− x(i))Fi,j

= DF x(i)

D.3 Proof of theorem 2.3 (Gradient steps reduce diffusion distance)

Let x, y be nodes such that φ1(x) < φ1(y). Let x′ be the node obtained from x by taking one step in the direction of∇φ1,
then there is a constant C such that for C ≤ t we have

dt(x
′, y) < dt(x, y).

With the reduction in distance being proportional to e−λ1 .

Directional Graph Networks

Proof. Recall that pk(x, y) = (D−1A)kx,y is the discrete heat kernel at step k, qt(x, y) =
∑
k≥0

e−ttk

k! pk(x, y) is the
continuous heat kernel at time t. In (Barlow, 2017), it is shown that the continuous heat kernel is computed by qt(x, y) =
e−tLnorm . Following (Coifman & Lafon, 2006) we can diagonalise qt to get the identity

dt(x, y) =

(
n−1∑
i=1

e−2tλi
(
φi(x)− φi(y)

)2) 1
2

(22)

The inequality dt(x′, y) < dt(x, y) is equivalent to

n−1∑
i=2

e−2tλi
((
φi(x

′)− φi(y)
)2
−
(
φi(x)− φi(y)

)2)
< e−2tλ1

((
φ1(x)− φ1(y)

)2
−
(
φ1(x′)− φ1(y)

)2)
(23)

The term on the left is bounded above by

n−1∑
i=2

e−2tλi
∣∣∣∣(φi(x′)− φi(y)

)2
−
(
φi(x)− φi(y)

)2∣∣∣∣
and this last term is in turn bounded above by

e−2tλ2

n−1∑
i=2

∣∣∣∣(φi(x′)− φi(y)
)2
−
(
φi(x)− φi(y)

)2∣∣∣∣
Inequality 23 will then hold if

e−2tλ2

n−1∑
i=2

∣∣∣∣(φi(x′)− φi(y)
)2
−
(
φi(x)− φi(y)

)2∣∣∣∣ < e−2tλ1

((
φ1(x)− φ1(y)

)2
−
(
φ1(x′)− φ1(y)

)2)
and this is equivalent to

1

2(λ1 − λ2)
log


((
φ1(x)− φ1(y)

)2
−
(
φ1(x′)− φ1(y)

)2)
∑n−1
i=2

∣∣∣∣(φi(x′)− φi(y)
)2
−
(
φi(x)− φi(y)

)2∣∣∣∣
 < t

if we take t to be larger than the term on the left the inequality we get dt(x′, y) < dt(x, y).

The constant C in the statement is the constant on the left side of the inequality. It is also interesting to note that C is
expected to be positive since the term λ1 − λ2 is negative and the argument of the log will most likely be < 1.

D.4 Proof for Lemma D.1 (Cosine eigenvectors)

Consider the lattice graph Γ of size N1×N2× ...×Nn, that has vertices
∏
i=1,...,n{1, ..., Ni} and the vertices (xi)i=1,...,n

and (yi)i=1,...,n are connected by an edge iff |xi − yi| = 1 for one index i and 0 for all other indices. Note that there are
no diagonal edges in the lattice. The eigenvector of the Laplacian of the grid L(Γ) are given by φj .

Lemma D.1 (Cosine eigenvectors). The Laplacian of Γ has an eigenvalue 2− 2 cos
(
π
Ni

)
with the associated eigenvector

φj that depends only the variable in the i-th dimension and is constant in all others, with φj = 1N1
⊗1N2

⊗ ...⊗x1,Ni ⊗
...⊗ 1Nn , and x1,Ni(j) = cos

(
πj
n −

π
2n

)
Proof. First, recall the well known result that the path graph on N vertices PN has eigenvalues

λk = 2− 2 cos

(
πk

n

)

Directional Graph Networks

with associated eigenvector xk with i-th coordinate

xk(i) = cos

(
πki

n
+
πk

2n

)

The Cartesian product of two graphs G = (VG, EG) and H = (VH , EH) is defined as G × H = (VG×H , EG×H) with
VG×H = VG×VH and ((u1, u2), ((v1, v2)) ∈ EG×H iff either u1 = v1 and (u2, v2) ∈ EH or (u1, v1) ∈ VG and u2 = v2.
It is shown in (Fiedler, 1973) that if (µi)i=1,...,m and (λj)j=1,...,n are the eigenvalues of G and H respectively, then the
eigenvalues of the Cartesian product graphG×H are µi+λj for all possible eigenvalues µi and λj . Also, the eigenvectors
associated to the eigenvalue µi + λj are ui ⊗ vj with ui an eigenvector of the Laplacian of G associated to the eigenvalue
µi and vj an eigenvector of the Laplacian of H associated to the eigenvalue λj .

Finally, noticing that a lattice of shape N1 × N2 × ... × Nn is really the Cartesian product of path graphs of length N1

up to Nn, we conclude that there are eigenvalues 2 − 2 cos
(
π
Ni

)
. Denoting by 1Nj the vector in RNj with only ones as

coordinates, then the eigenvector associated to the eigenvalue 2− 2 cos
(
π
Ni

)
is

1N1 ⊗ 1N2 ⊗ ...⊗ x1,Ni ⊗ ...⊗ 1Nn

where x1,Ni is the eigenvector of the Laplacian of PNi associated to its first non-zero eigenvalue. 2− 2 cos
(
π
Ni

)
.

D.5 Radius 1 convolution kernels in a grid

In this section we show any radius 1 convolution kernel can be obtained as a linear combination of the Bdx(∇φi) and
Bav(∇φi) matrices for the right choice of Laplacian eigenvectors φi. First we show this can be done for 1-d convolution
kernels.

Theorem D.2. On a path graph, any 1D convolution kernel of size 3 k is a linear combination of the aggregatorsBav,Bdx

and the identity I .

Proof. Recall from the previous proof that the first non zero eigenvalue of the path graph PN has associated eigenvector
φ1(i) = cos(πiN −

π
2N). Since this is a monotone decreasing function in i, the i-th row of∇φ1 will be

(0, ..., 0, si−1, 0,−si+1, 0, ..., 0)

with si−1 and si+1 > 0. We are trying to solve

(aBav + bBdx + cId)i,: = (0, ..., 0, x, y, z, 0, ..., 0)

with x, y, z, in positions i− 1, i and i+ 1. This simplifies to solving

a
1

‖s‖L1

|s|+ b
1

‖s‖L2

s+ c(0, 1, 0) = (x, y, z)

with s = (si−1, 0,−si+1), which always has a solution because si−1, si+1 > 0.

Theorem D.3 (Generalization radius-1 convolutional kernel in a grid). Let Γ be the n-dimensional lattice as above and
let φj be the eigenvectors of the Laplacian of the lattice as in theorem D.1. Then any radius 1 kernel k on Γ is a linear
combination of the aggregatorsBav(φi),Bdx(φi) and I .

Proof. This is a direct consequence of D.2 obtained by adding n 1-dimensional kernels, with each kernel being in a
different axis of the grid as per Lemma D.1. See figure 7 for a visual example in 2D.

Directional Graph Networks

CNN equivalent on
image 𝐼𝑁×𝑀 , with
𝑁 > 𝑀 ; 𝑁%𝑀 ≠ 0

Graph aggregation

11

𝒚 = 2𝑩𝑎𝑣
1 𝒙

1-1

𝒚 = 2𝑩𝑑𝑥
1 𝒙

1

1

𝒚 = 2𝑩𝑎𝑣
𝑚 𝒙

1

-1

𝒚 = 2𝑩𝑑𝑥
𝑚 𝒙

𝑤1
𝑤2

+ 𝑤3

𝑤4

+ 𝑤5

𝑤4

− 𝑤5

𝑤2

− 𝑤3

Figure 7. Realization of a radius-1 convolution using the proposed aggregators. Ix is the input feature map, ∗ the convolutional operator,
Iy the convolution result, andBi = B(∇φi).

D.6 Proof for theorem 2.4 (Generalization radius-R convolutional kernel in a lattice)

For an n-dimensional lattice, any convolutional kernel of radius R can be realized by a linear combination of directional
aggregation matrices and their compositions.

Proof. For clarity, we first do the 2 dimensional case for a radius 2, then extended to the general case. Let k be the radius
2 kernel on a grid represented by the matrix

a5×5 =


0 0 a−2,0 0 0
0 a−1,−1 a−1,0 a−1,1 0

a0,−2 a0,−1 a0,0 a0,1 a0,2
0 a1,−1 a1,0 a1,1 0
0 0 a2,0 0 0


since we supposed the N1 × N2 grid was such that N1 > N2, by theorem D.1, we have that φ1 is depending only in the
first variable x1 and is monotone in x1. Recall from D.1 that

φ1(i) = cos

(
πi

N1
+

π

2N1

)
The vector N1

π ∇ arccos(φ1) will be denoted by F1 in the rest. Notice all entries of F1 are 0 or ±1. Denote by F2 the
gradient vector N2

π ∇ arccos(φk) where φk is the eigenvector given by theorem D.1 that is depending only in the second
variable x2 and is monotone in x1 and recall

φk(i) = cos

(
πi

N2
+

π

2N2

)
For a matrix B, let B± the positive/negative parts of B, ie matrices with positive entries such that B = B+ −B−. Let
Br1 be a matrix representing the radius 1 kernel with weights

a3×3 =

 0 a−1,0 0
a0,−1 a0,0 a0,1

0 a1,0 0


The matrixBr1 can be obtained by theorem D.3. Then the radius 2 kernel k is defined by all the possible combinations of
2 positive/negative steps, plus the initial radius-1 kernel.

Br2 =
∑

−2≤i,j≤2
|i|+|j|=2

(
ai,j(F

sgn(i)
1)|i|(F

sgn(j)
2)|j|

)
︸ ︷︷ ︸

Any combination of 2 steps

+ Br1︸︷︷︸
all possible single-steps

with sgn the sign function sgn(i) = + if i ≥ 0 and − if i < 0. The matrixBr2 then realises the kernel a5×5.

We can further extend the above construction to N dimension grids and radius R kernels k∑
V={v1,v2,...,vN}∈Nn

||V ||L1≤R
−R≤vi≤R︸ ︷︷ ︸

Any choice of walk V with at mostR-steps

aV

N∏
j=1

(F
sgn(vj)
j)|vj |︸ ︷︷ ︸

Aggregator following the steps defined in V

Directional Graph Networks

with Fj =
Nj
π ∇ arccosφj ,φj the eigenvector with lowest eigenvalue only dependent on the j-th variable and given in

theorem D.1 and
∏

is the matrix multiplication. V represents all the choices of walk {v1, v2, ..., vn} in the direction of the
fields {F1,F2, ...,Fn}. For example, V = {3, 1, 0,−2} has a radius R = 6, with 3 steps forward of F1, 1 step forward of
F2, and 2 steps backward of F4.

D.7 Proof for theorem 2.5 (Comparison with 1-WL test)

DGNs using the mean aggregator, any directional aggregator of the first Laplacian eigenvector and injective degree-scalers
are strictly more powerful than the 1-WL test.

Proof. We will show that (1) DGNs are at least as powerful as the 1-WL test and (2) there is a pair of graphs which are not
distinguishable by the 1-WL test which DGNs can discriminate.

Since the DGNs include the mean aggregator combined with at least an injective degree-scaler, (Corso et al., 2020) show
that the resulting architecture is at least as powerful as the 1-WL test.

Aggregation matrix Graph 1 Graph 2

𝑨
1𝑎 + 1𝑏 → 𝑏
1𝑎 + 2𝑏 → 𝑎

1𝑎 + 1𝑏 → 𝑏
1𝑎 + 2𝑏 → 𝑎

𝑩𝒅𝒙
𝟏 1𝑎 − 1𝑏 → 𝑏

0 → 𝑎
1𝑎 − 1𝑏 → 𝑏

0.44𝑏 − 0.44𝑎 → 𝑎

𝑩𝒂𝒗
𝟏 1𝑎 → 𝑏

1𝑏 → 𝑎
1𝑎 → 𝑏

0.44𝑏 + 0.56𝑎 → 𝑎

b

b

a

a

b

b

b

b

a a

b

b

Graph 1 Graph 2

Figure 8. Illustration of an example pair of graphs which the 1-WL test cannot distinguish but DGNs can. The table shows the node
feature updates done at every layer. MPNN with mean/sum aggregators and the 1-WL test only use the updates in the first row and
therefore cannot distinguish between the nodes in the two graphs. DGNs also use directional aggregators that, with the vector field given
by the first eigenvector of the Laplacian matrix, provides different updates to the nodes in the two graphs.

Then, to show that the DGNs are strictly more powerful than the 1-WL test it suffices to provide an example of a pair of
graphs that DGNs can differentiate and 1-WL cannot. Such a pair of graphs is illustrated in figure 8.

The 1-WL test (as any MPNN with, for example, sum aggregator) will always have the same features for all the nodes
labelled with a and for all the nodes labelled with b and, therefore, will classify the graphs as isomorphic. DGNs, via
the directional smoothing or directional derivative aggregators based on the first eigenvector of the Laplacian matrix, will
update the features of the a nodes differently in the two graphs (figure 8 presents also the aggregation functions) and will,
therefore, be capable of distinguishing them.

