
RESEARCH POSTER PRESENTATION DESIGN © 2019

www.PosterPresentations.com

● Many datasets in the real world can be structured as
graphs or networks, such as social groups, chemical
interactions, protein models, and phase transitions.

● Graph neural networks (GNN) generalize neural
networks for deep learning on arbitrary irregular
graphs.

● Because current GNN models do not scale well and
datasets of interest continue to increase in complexity
and size, improving computational efficiency is
important to further research applicability.

● We study parallelizing GNNs using existing tools and
frameworks known to be successful for traditional
deep learning.

Overview & Motivation

Graph Neural Networks

● A citation network dataset with 19,717 nodes and 44,338 edges. Each node has 500 features, representing unique 
words in a single paper (node).

● Three node classes: Diabetes Mellitus Experimental, Diabetes Mellitus Type 1, Diabetes Mellitus Type 2.

The PubMed Dataset Results: Accuracy degraded

Future work

Analyzing the Performance of Graph Neural Networks 
with Pipe Parallelism

Graph Attention Network (GAT)
● GAT (Veličković et al. 2017) is a GNN with attention

layers on top of graph convolutions.
● The entire network consists of two GAT layers with a

multi-head attention layer to compute attention
coefficients for the neighboring nodes, which is used
to propagate information through the network.

Input is a graph composed of nodes
with features, such as class labels.
One type of task is to classify each
node using the information from
the connecting edges.

Benchmark Training: Single Devices 
As expected, single GPU performs much faster than
single CPU for both PyG and DGL frameworks.

No significant performance improvement using DGX (4
GPUs) and GPipe with “chunk size” = 1 (i.e., no micro-
batching) compared to single GPU.

Refactoring the GNN into a Sequential container that
only passes a single argument required extracting the
graph nodes and embedding features into a tuple of
tensors so that the graph could be re-built in the
convolutional layers.

● Implement other GNN layer models, such as
GraphConv, with these frameworks.

● PubMed is too small. Experiment with massive
datasets: Can performance over single GPU
increase on extremely large graphs?

As we increase the number of GPipe chunks to enable
micro-batching, the training time increases.

The implementation of GPipe for GNN through a
Sequential model required re-constructing (on the CPU!)
the micro-batched data as subgraphs for each GNN
layer.

The increased time is attributed to re-constructing the
graphs within each chunk and moving data across
devices.

● Introduced by Google Brain in 2018 to enable efficient
training of large, memory-consuming models on
current accelerator architectures.

● Splits NN layers across devices and microbatches the
dataset.

● torchgpipe: A GPipe implementation in PyTorch.

GPipe for Parallelizing DNNs

Acknowledgements
Thank you to Prof. Ian Foster, Prof. Rick Stevens, and 
Peng Ding for the guidance and feedback on this 
paper. We also thank the DGX team, Daniel Murphy-
Olson and Ryan Aydelott, and the Computing, 
Environment, and Life Sciences directorate at 
Argonne National Laboratory.

● GNNs build a neural network atop a simultaneous
message passing paradigm that aggregates
neighborhood information.

● Each NN layer is a function of the previous layer and
the input graph.

Graph Learning Frameworks
Deep Graph Library (DGL): Tensor framework-agnostic 
Python implementation of graph neural network model 
families.

PyTorch Geometric (PyG): PyTorch extension library for 
geometric deep learning.

GPipe micro-batches the graph nodes sequentially, 
from which the subgraphs are generated. Significant 
information loss resulted from ignored edge 
relationships across the batches.

DGL and PyG provide sophisticated single graph 
micro-batching solutions, but GPipe would not use 
these batches.

Results: Training time increased 

DGL and PyG implemented on DGX with GPipe
without micro-batching offer similar performance.

Matthew T. Dearing & Xiaoyan (Angela) Wang


