
Deep Graph Learning for Program
Analysis and System Optimization

Goals Graph Representation in Graphs

Dynamic Dataflow Graphs
q A dynamic dataflow graph is defined as G (N, E,W)

q N: a set of instructions dynamically generated at runtime
q E: a set of dependent edges between instructions
q W: a set of edge weights representing the execution time for

memory operations

Evaluations and Results
We use gem5-gpu to simulate a varying number of out-
of-order CPU cores and GPUs, and we compare against
the different baselines for eight applications against our
PGL framework.

Yao Xiao, Guixiang Ma,
Nesreen Ahmed, Theodore Willke,
Shahin Nazarian, Paul Bogdan

Rather than relying on expert compiler writers to develop
clever heuristics to optimize the code, we can utilize
machine learning to optimize a compiler to make the
machine run faster. We represent high level programs as
weighted graphs. This enables the proposed framework to
efficiently analyze the structural information flow of software
programs and determine their parallelization.

Framework

Unified end-to-end deep graph learning framework

Graph Example

Unified Deep Graph Learning Framework

Problem Formulation
Given a complex software application, the goal is to learn a
mapping function that predicts which code segments would
run best on a specific hardware device in heterogeneous
hardware platforms.

• Collect the representative dynamic trace. This is
augmented with the help of the control flow graph
(CFG). The goal is to fully color the CFG.

• Check data, control, and memory dependencies and
insert edges accordingly

An example of a standard two-dimensional nine point
stencil calculation and its corresponding graph
representation. By adopting this graph representation,
we can see that some patterns are recurring due to for
loops used in the code.

1. Graph autoencoder: partition the dynamic dataflow
graph into representative kernels which later will be
used to predict the label by graph neural networks.
(a) Compute an embedding of each node in a graph;
(b) Learn the latent embedding using GCN;
(c) Compute the pairwise distance between nodes;
(d) Perform spectral clustering;

2. Graph neural networks: After each kernel is identified,
we use a GNN to predict the correct platform to
execute the kernel by updating the node vectors
iteratively.

