Efficient Distribution for Deep Learning on Large Graphs

Loc Hoang¹, Xuhao Chen², Hochan Lee¹, Roshan Dathathri³, Gurbinder Gill³, and Keshav Pingali¹,³

¹The University of Texas at Austin
²Massachusetts Institute of Technology
³Katana Graph

DeepGalois Overview

- Scalable distributed GNN framework
- Generalize GNN to **vertex programming model**
 - Topology driven: All vertices are active
 - Operators
 - Aggregate features from 1-hop neighbors
 - Local linear transformation
 - **Termination condition**: number of layers
- **Distributed Graph Engine**
 - CuSP [1]: Graph partitioner
 - Gluon [2]: Communication substrate
 - Galois [3]: Computation engine
- Outperform the state-of-the-art
 - 4x speedup over DistDGL [4]

Synchronization

- Support arbitrary use-defined partitioning policy
- Optimize communication based on the partitioning policy

Evaluation

- **GraphSAGE average epoch time**
- DeepGalois 4x faster than DistDGL
- 32 hosts vs 1 host for reddit
 - DeepGalois: 2.4x speedup
 - DistDGL: 2.8x slowdown

Graph Partitioning

- Edges are uniquely assigned among hosts
- Proxies for end points
- One proxy is designated the **master proxy**
- Different policies have different edge/master assignment
- Policies trade-off
 - Computation load-balance
 - Communication overhead

References

