
Adaptive Load Balancing for Parallel GNN Training

Two-stage load balancing strategy
Setup

Results

Stage 1: Before training, we employ the graph partitioning 
algorithm in DistDGL to generate static graph partition 
scheme that minimizes the cut edge set and meanwhile 
roughly balances the number of nodes and edges among 
partitions.

Stage2: During training, we keep track of the training time 
of all trainers and adjust their workload accordingly. The 
basic Idea is to increase the workload of trainers that finish 
one iteration faster while do the opposite for those that are 
slower.

Speed-up on OGBN-products

Speed-up on OGBN-papers100M

Average iteration time of each trainer. It is well 
balanced with the adaptive load balancing strategy.

Dataset: Open Graph Benchmark (ogbn-products, 
ogbn-papers100M)
Hardware: 4 * AWS EC2 p3dn.24xlarge instances 
with 8 V100 GPUs on each instance
Model: GraphSAGE
Hyper-parameters:
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Proposed Method EvaluationAbstract
The recent emergence of demand for running Graph 
Neural Networks (GNNs) on giant real world graphs 
requires more scalable system designs. Due to the 
sparse and irregular connections a graph has, parallel 
GNN training encounters the problem of load imbalance 
among workers. In this paper, we show that previous 
techniques based on graph partitioning is insufficient to 
address the load imbalance caused by GNN sampling 
algorithms. We thus propose a two-stage strategy to 
balance the workload adaptively during training. Our 
evaluation shows that the strategy effectively produces 
more balanced workloads which accelerates the training 
by 25%.

Background
As real world graphs can be gigantic, i.e., consisting of 
billions of nodes or edges, it is critical to support training 
GNNs at scale. To parallelize the training procedure, 
current GNN systems adopt a synchronous data 
parallelism approach: each worker performs sampling 
and training in parallel and synchronizes model 
parameters before the next iteration.
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Challenges
However, due to the sparse and irregular connections a 
graph has, the sample sizes among workers can vary 
drastically, causing severe workload imbalance. 
Existing systems such as DistDGL leverage off-the-
shelf graph partitioning algorithms to address the 
problem.

The approach based on graph partitioning algorithms 
are not sufficient to balance the GNN workload among 
trainers. Many graph partitioning algorithms aim at 
minimizing the number of cross-partition edges or the 
number of replicated nodes while balancing the number 
of nodes and edges in each partition. However, the 
workload balance of parallel GNN training is 
characterized by a different set of metrics including the 
number of nodes/edges and the remote nodes ratio of 
each sampled subgraph and thus demands different 
solutions.
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Locality-aware training set re-assignment

After adjusting the batch size of each trainer, we then need 
to decide the assignments of training node set. Because 
training nodes that belong to partitions on other machines 
require network requests to perform neighbor sampling, it is 
important to balance them among trainers.

Dataset OGBN-Products OGBN-Papers100M
Light Heavy Light Heavy

Fan-out 15,10,5 10,10,5,5 15,10,5 10,10,5,5
Batch size 2000 2000 2000 5000


