
Adaptive Load Balancing for Parallel GNN Training

Two-stage load balancing strategy
Setup

Results

Stage 1: Before training, we employ the graph partitioning
algorithm in DistDGL to generate static graph partition
scheme that minimizes the cut edge set and meanwhile
roughly balances the number of nodes and edges among
partitions.

Stage2: During training, we keep track of the training time
of all trainers and adjust their workload accordingly. The
basic Idea is to increase the workload of trainers that finish
one iteration faster while do the opposite for those that are
slower.

Speed-up on OGBN-products

Speed-up on OGBN-papers100M

Average iteration time of each trainer. It is well
balanced with the adaptive load balancing strategy.

Dataset: Open Graph Benchmark (ogbn-products,
ogbn-papers100M)
Hardware: 4 * AWS EC2 p3dn.24xlarge instances
with 8 V100 GPUs on each instance
Model: GraphSAGE
Hyper-parameters:

Qidong Su, Minjie Wang, Da Zheng, Zheng Zhang

Proposed Method EvaluationAbstract
The recent emergence of demand for running Graph
Neural Networks (GNNs) on giant real world graphs
requires more scalable system designs. Due to the
sparse and irregular connections a graph has, parallel
GNN training encounters the problem of load imbalance
among workers. In this paper, we show that previous
techniques based on graph partitioning is insufficient to
address the load imbalance caused by GNN sampling
algorithms. We thus propose a two-stage strategy to
balance the workload adaptively during training. Our
evaluation shows that the strategy effectively produces
more balanced workloads which accelerates the training
by 25%.

Background
As real world graphs can be gigantic, i.e., consisting of
billions of nodes or edges, it is critical to support training
GNNs at scale. To parallelize the training procedure,
current GNN systems adopt a synchronous data
parallelism approach: each worker performs sampling
and training in parallel and synchronizes model
parameters before the next iteration.

Partition 1 Partition 2 Partition 3

Machine 1 Machine 2 Machine 3

sample

Remote training node

Normal node

Training node

Parallel GNN Training

Challenges
However, due to the sparse and irregular connections a
graph has, the sample sizes among workers can vary
drastically, causing severe workload imbalance.
Existing systems such as DistDGL leverage off-the-
shelf graph partitioning algorithms to address the
problem.

The approach based on graph partitioning algorithms
are not sufficient to balance the GNN workload among
trainers. Many graph partitioning algorithms aim at
minimizing the number of cross-partition edges or the
number of replicated nodes while balancing the number
of nodes and edges in each partition. However, the
workload balance of parallel GNN training is
characterized by a different set of metrics including the
number of nodes/edges and the remote nodes ratio of
each sampled subgraph and thus demands different
solutions.

Imbalanced number of nodes in each layer among trainers

Imbalanced number of edges in each layer among trainers

Imbalanced remote nodes ratio in each layer among trainers

Training nodes in
partition 0

Training nodes in
partition 1

Training nodes in
partition 2

Training nodes in
partition 3

Remote training
nodes added to
machine 1

Training set assigned to machine 1

Split local and remote training
nodes according to the batch size
of each GPU respectively

Before adapting batch size

After adapting batch size

Remote training
nodes added to
machine 2

GPU0 GPU1 GPU2 GPU3

Locality-aware training set re-assignment

After adjusting the batch size of each trainer, we then need
to decide the assignments of training node set. Because
training nodes that belong to partitions on other machines
require network requests to perform neighbor sampling, it is
important to balance them among trainers.

Dataset OGBN-Products OGBN-Papers100M
Light Heavy Light Heavy

Fan-out 15,10,5 10,10,5,5 15,10,5 10,10,5,5
Batch size 2000 2000 2000 5000

