

MLSys FEDML MAKING COLLABORATION INTELLIGEN FedGraphNN: A Federated Learning System and **Benchmark for Graph Neural Networks**

Chaoyang He*, Keshav Balasubramanian*, Emir Ceyani*, Yu Rong, Peilin Zhao, Junzhou Huang, Murali Annavaram, Salman Avestimehr

Contributions:

- An open-source federated learning system for GNNs, namely **FedGraphNN**
- A large-scale federated molecular dataset (hERG) for further research exploration.

Problem Formulation: Federated GNN's

Say, k^{th} client owns a dataset $\mathscr{D}^{(k)} := \left\{ \left(G_i^{(k)}, y_i^{(k)} \right) \right\}_{i=1}^{N^{(k)}}$, where $G_i^{(k)} = (\mathscr{V}_i^{(k)}, \mathscr{E}_i^{(k)})$ is the i^{th} graph sample in $\mathscr{D}^{(k)}$ with node & edge feature sets $X^{(k)} = \left\{ \boldsymbol{x}_m^{(k)} \right\}_{m \in \mathscr{V}_i^{(k)}}$ & $Z^{(k)} = \left\{ \boldsymbol{e}_{m,n}^{(k)} \right\}_{m,n \in \mathscr{V}_i^{(k)}}$,

$$\begin{split} y_i^{(k)} &\text{is the multi-class label of } G_i^{(k)}. \text{ Each client also owns a } \quad \text{L-layer MPNN formalized as :} \\ m_i^{(k,\ell+1)} &= \text{AGG}\left(\left\{M_{\theta}^{(k,\ell+1)}\left(h_i^{(k,\ell)},h_j^{(k,\ell)},e_{i,j}\right) \mid j \in \mathcal{N}_i\right\}\right) \\ & h_i^{(k,\ell+1)} &= U_{\theta}^{(k,\ell+1)}\left(h_i^{(k,\ell)},m_i^{(k,\ell+1)}\right) \\ & \hat{y}_i^{(k)} &= R_{\theta}\left(\left\{h_j^{(k,L)} \mid j \in \mathcal{V}_i^{(k)}\right\}\right) \end{split}$$

We formulate GNN-based FL as a distributed optimization problem as follows:

$$\min_{W} F(W) = \min_{W} \sum_{k=1}^{K} \frac{N^{(k)}}{N} \cdot f^{(k)}(W),$$

where $f^{(k)}(W) = \frac{1}{N^{(k)}} \sum_{i=1}^{N} \mathscr{L}(W; X_i^{(k)}, Z_i^{(k)}, y_i^{(k)})$ is the k^{th} client's local objective function

measuring the local empirical risk over dataset $\mathcal{D}^{(k)}$.

FedGraphNN System Design

FedGraphNN Benchmark

FedGraphNN supports the MoleculeNet datasets:

FedGraphNN currently supports the following GNN models & FL optimizers:

• GCN FedAvg Split Learning • GAT • FedOpt • GraphSage FedNova Quantum Mechanics (QM9) # load data Physical Chemistry (ESOL, FreeSolv, Lipo) dataset, feat_dim, num_cats = load_data(args, args.dataset) Biophysics (hERG, BACE) val_data_num, test_data_num, train_data_global, val_data_global, test_data_global Physiology (SIDER, BBBP, ClinTox, Tox21) data_local_num_dict, train_data_local_dict, val_data_local_dict, test_data_local_dict] = dataset # create mod model, trainer = create_model_and_trainer(args, args.model, feat_dim, num_cats, output_dim=None) GCN, GAT, GraphSage, MPNN.. # start "federated averaging (FedAvg) FedAvg, FedOpt. FedML_FedAvg_distributed(process_id, worker_number, device, comm model, train_data_num, train_data_global, test_data_global data_local_num_dict, train_data_local_dict, test_data_local_dict, args, trainer)

Experimental Results

Table 2. Classification results (higher is better)										
Dataset (samples)	Non-I.I.D. Partition Method	GNN Model	Federated Optimizer	Performance Metric	MoleculeNet Results	Score on Centralized Training	Score on Federated Training			
SIDER	LDA with $\alpha = 0.2$	GCN GAT	FedAvg	ROC-AUC	0.638	0.6476 0.6639	$\begin{array}{c} 0.6266 \ (\downarrow \ 0.0210) \\ 0.6591 \ (\downarrow \ 0.0048) \end{array}$			
(1427)	4 clients	GraphSAGE				0.6669	0.6700 († 0.0031)			
BACE	LDA with $\alpha = 0.5$	GCN GAT	FedAvg	ROC-AUC	0.806	0.7657 0.9221	0.6594 (↓ 0.1063) 0.7714 (↓ 0.1507)			
(1513)	4 clients	GraphSAGE	C			0.9266	0.8604 (↓ <mark>0.0662</mark>)			
Clintox	LDA with $\alpha = 0.5$	GCN GAT	FedAvg	ROC-AUC	0.832	0.8914 0.9573	$\begin{array}{c} 0.8784 (\downarrow 0.0130) \\ 0.9129 (\downarrow 0.0444) \end{array}$			
(1478)	4 clients	GraphSAGE	-			0.9716	$0.9246 (\downarrow 0.0470)$			
BBBP	LDA with $\alpha = 2$	GCN GAT	FedAvg	ROC-AUC	0.690	$0.8705 \\ 0.8824$	$\begin{array}{c} 0.7629 (\downarrow 0.1076) \\ 0.8746 (\downarrow 0.0078) \end{array}$			
(2039)	4 clients	GraphSAGE	C			0.8930	0.8935 († 0.0005)			
Tox21	LDA with $\alpha = 3$	GCN GAT	FedAvg	ROC-AUC	0.829	0.7800 0.8144	$\begin{array}{c} 0.7128 (\downarrow 0.0672) \\ 0.7186 (\downarrow 0.0958) \end{array}$			
(7831)	8 clients	GraphSAGE	5			0.8317	0.7801 (↓ 0.0516)			

*Note: to reproduce the result, please use the same random seeds we set in the library.

Table 4. Training time with FedAvg on GNNs (Hardware: 8 x NVIDIA Quadro RTX 5000 GPU (16GB/GPU); RAM: 512G; CPU: Intel Xeon Gold 5220R 2.20GHz)

		SIDER	BACE	Clintox	BBBP	Tox21	FreeSolv	ESOL	Lipo	hERG	QM9
	GCN	5m 58s	4m 57s	4m 40s	4m 13s	15m 3s	4m 12s	5m 25s	16m 14s	35m 30s	6h 48m
Wall-clock Time	GAT	8m 48s	5m 27s	7m 37s	5m 28s	25m 49s	6m 24s	8m 36s	25m 28s	58m 14s	9h 21m
	GraphSAGE	2m 7s	3m 58s	4m 42s	3m 26s	14m 31s	5m 53s	6m 54s	15m 28s	32m 57s	5h 33m
	GCN	697.3K	605.1K	466.2K	427.2K	345.8K	142.6K	231.6K	480.6K	516.6K	153.9K
Average FLOP	GAT	703.4K	612.1K	470.2K	431K	347.8K	142.5K	232.6K	485K	521.3K	154.3K
	GraphSAGE	846K	758.6K	1.1M	980K	760.6K	326.9K	531.1K	1.5M	1.184M	338.2K
	GCN	15.1K	13.5K	13.6K	13.5K	14.2K	13.5K	13.5K	13.5K	13.5K	14.2K
Parameters	GAT	20.2K	18.5K	18.6K	18.5K	19.2K	18.5K	18.5K	18.5K	18.5K	19.2K
	GraphSAGE	10.6K	8.9K	18.2K	18.1K	18.8K	18.1K	18.1K	269K	18.1K	18.8K

*Note that we use the distributed training paradigm where each client's local training uses one GPU. Please refer our code for details

Research Questions & Future Directions

Our key findings:

- 1. How to mitigate the accuracy gap on graph datasets with non-I.I.D.ness?
 - 1. Can we personalize the model for each user?
- 2. How to deal with limited labels for real-world graph data?
 - 1. How to leverage semi or self-supervised learning into GNN-based FL?
 - 2. What if we do not have labels at the edge?
- 3. How to design efficient GNN-based FL algorithms for sub-graph, node and edge levels?

Future Directions:

- 1. Integrate more domains:
 - 1. Recommendation Systems
 - 2. Spatiotemporal Forecasting
 - 3. Knowledge Graphs
- 2. Enable GNN models with edge information

https://github.com/FedML-AI/FedGraphNN