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1. Motivation 2. Existing GNN programming frameworks

 Graph Neural Networks (GNN): A Frameworks with support for GNN face a complex trade-off between
flexibility and usability.

* GNNs have outstanding applications in many fields where data
is structured as graphs (e.g., computer networks, chemistry, d Two main categories can be distinguished:
biology, physics, recommender systems) [1, 2]. 1. Frameworks with full flexibility:

e Nowadays, GNN is a hot topic in the Machine Learning (ML) (€.8., DGL, PyTorch Geometric, DeepMind’s Graph Nets)

field, and new applications are continuously emerging. v Make nohassumptions on the possible ..DG
GNN architectures.
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* GNNs are particularly difficult to implement (even for

experts in neural network programming). X Require tensor-based implementations of critical . PyTOFCh

parts of the GNN (e.g., NN layers, message function). geometric

[ Main barriers for exploring new applications: 2. Frameworks for quick implementation:
1) Experts in the potential fields of application often lack the (e.g., Spektral, Graph Gym)

needed programming skills (e.g., TensorFlow, PyTorch). Introduce important limitations on the possible

X GNN architectures (e.g., they mainly support
well-known GNN models).

2) GNN-based applications often require to create custom GNN

architectures adapted to the problem. | | |
(e.g., non-standard message-passing schemes) v Provide high-level GNN abstractions (or even

a Spektral

codeless programming interfaces)

3. IGNNITION

J Main features:

1. High-level abstraction: Novel message-passing abstraction (MSMP graph). EMOre P at:i

2. Codeless interface: Users can define their GNNs in a YAML file. | https://ignnition.net i

3. Flexibility: Support for standard models (e.g., GCN, GAT, MPNN, Gated
Neural Networks) [3] and custom GNNs with non-standard message-passing
schemes (e.g., GNN models applied to computer networks [1, 4]).

Use case: Implementation of RouteNet [1]

Fragment of the YAML file: Message passing definition

— destination entity: link
source entities:
— name: path
message:
— type: direct_assignment

aggregation:
— type: sum

update:
type: neural_network
nn_name: recurrent_1

4. Debugging assistant: Visual representations and advanced error-checking. 1 T4
i aging . P . . . s IGNNiItion Debugging assistant: Visual representation of the GNN
9. High performance: Equivalent to native TensorFlow implementations. pate o ks | | model
[GNN descri ptim:\ (Train & Evaluate\ i i Output layer
.. = :
 IGNNITION produces an efficient AL | @ "Custoqm:r:fﬂpmndel\ s patsanka | | i> | G
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