
1. Motivation

IGNNITION: A framework for fast prototyping of

Graph Neural Networks

2. Existing GNN programming frameworks

4. Evaluation References
[1] Krzysztof Rusek et al. 2019. Unveiling

the potential of GNN for network modeling

and optimization in SDN. In ACM SOSR.

[2] Jie Zhou, et al., 2018. Graph neural

networks: A review of methods and

applications. arXiv preprint

arXiv:1812.08434.

[3] Wu, Zonghan, et al. "A comprehensive

survey on graph neural networks." IEEE

transactions on neural networks and

learning systems (2020).

[4] Fabien Geyer et. al. 2018. Learning and

generating distributed routing protocols

using graph-based deep learning. In ACM

BigDAMA workshop.

3. IGNNITION

1 Barcelona Neural Networking Center, Universitat Politècnica de Catalunya, Spain
2 Network Technology Lab., Huawei Technologies Co.,Ltd.

David Pujol-Perich1, José Suárez-Varela1 , Miquel Ferriol-Galmés1, Shihan Xiao2, 

Bo Wu2, Albert Cabellos-Aparicio1, Pere Barlet-Ros1

❑ Main features:

1. High-level abstraction: Novel message-passing abstraction (MSMP graph).

2. Codeless interface: Users can define their GNNs in a YAML file.

3. Flexibility: Support for standard models (e.g., GCN, GAT, MPNN, Gated

Neural Networks) [3] and custom GNNs with non-standard message-passing

schemes (e.g., GNN models applied to computer networks [1, 4]).

4. Debugging assistant: Visual representations and advanced error-checking.

5. High performance: Equivalent to native TensorFlow implementations.

❑ We implement two models applied to computer networks with non-standard message-passing 

architectures: RouteNet [1], and GQNN [4].

❑ Compare the performance of our implementation w.r.t. the original implementations in

TensorFlow.

❑ Experimental evaluation (IGNNITION vs Native TensorFlow):

❑ Frameworks with support for GNN face a complex trade-off between 

flexibility and usability.
❑ Graph Neural Networks (GNN):

• GNNs have outstanding applications in many fields where data

is structured as graphs (e.g., computer networks, chemistry,

biology, physics, recommender systems) [1, 2].

• Nowadays, GNN is a hot topic in the Machine Learning (ML)

field, and new applications are continuously emerging.

• GNNs are particularly difficult to implement (even for

experts in neural network programming).

❑ Main barriers for exploring new applications:

1) Experts in the potential fields of application often lack the

needed programming skills (e.g., TensorFlow, PyTorch).

2) GNN-based applications often require to create custom GNN

architectures adapted to the problem.

(e.g., non-standard message-passing schemes)

This work has received funding from the

European Union’s Horizon 2020 research and

innovation programme within the framework

of the NGI-POINTER Project funded under

grant agreement No. 871528. This paper

reflects only the authors' view; the European

Commission is not responsible for any use

that may be made of the information it

contains. This work was also supported by

the Spanish MINECO under contract TEC2017-

90034-C2-1-R ALLIANCE and the Catalan

Institution for Research and Advanced

Studies (ICREA).

Acknowledgment

Execution cost (during training)

X

CONTACT US: contactus@bnn.upc.edu

✓

Accuracy (Mean Relative Error)

Take-home messages:

• IGNNITION provides a codeless interface for fast prototyping of GNNs, being completely

oblivious to the underlying complex tensor-based operations.

• Flexibility to implement custom GNNs with non-standard message-passing schemes.

• No performance loss compared to native TensorFlow implementations.

X

✓

Fragment of the YAML file: Message passing definition

Debugging assistant: Visual representation of the GNN

Use case: Implementation of RouteNet [1]

Results: The resulting IGNNITION implementations are equivalent in execution cost and accuracy

(after training) to the original implementations directly coded in TensorFlow.

❑ IGNNITION produces an efficient 

TensorFlow implementation given a GNN 

model description (in YAML) and a dataset 
processed with NetworkX.

3 lines of 
code

Automatic 
generation

❑ Two main categories can be distinguished:

1. Frameworks with full flexibility:

(e.g., DGL, PyTorch Geometric, DeepMind’s Graph Nets)

Make no assumptions on the possible

GNN architectures.

Require tensor-based implementations of critical 

parts of the GNN (e.g., NN layers, message function).

2. Frameworks for quick implementation:
(e.g., Spektral, Graph Gym)

Introduce important limitations on the possible 

GNN architectures (e.g., they mainly support 

well-known GNN models).

Provide high-level GNN abstractions (or even

codeless programming interfaces)

More information at:
https://ignnition.net

mailto:contactus@bnn.upc.edu
https://ignnition.net/

