
Adaptive Filters and Aggregator Fusion for Efficient Graph Convolutions
Shyam A. Tailor 1 Felix L. Opolka 1 Pietro Liò 1 Nicholas D. Lane 1,2

1Department of Computer Science and Technology, University of Cambridge 2Samsung AI Center, Cambridge, UK

Our Contributions

Our work can be viewed in the same way as MobileNet for CNNs. We think carefully about effi-

ciency without sacrificing expressivity.

1. We achieve SOTA accuracy with only O(V ) memory consumption by using adaptive filters.

2. We propose aggregator fusion, a technique that leverages observation about hardware

implementation to enable large boosts in accuracy for small increases in latency. This technique

can be widely adopted by the community.

3. We carefully consider the state of accelerator design, and design our architecture so that it can be

hardware accelerated.

Adaptive Filtering for GNNs

Our approach employs B separate basis filters, each of which is parameterised like GCN. These are

then combined using nodewise-adaptive weightings. This can be intuitively interpreted as giving each

node its own weight matrix, but also has interesting spectral interpretations. This can be generalised

to multiple heads, and to generalised aggregators:

y(i) = ‖H
h=1

∑
⊕∈A

B∑
b=1

w
(i)
h,⊕,b

⊕
j∈N (i)∪{i}

Θbx(j)

Results

Table 1:EGC consistently obtains the best performance against normalised baselines. Any results

marked with ∗ ran out of memory on the popular Nvidia 1080Ti or 2080Ti GPUs.

Architecture ZINC (MAE ↓) CIFAR (Acc. ↑) MolHIV (ROC-AUC ↑) Arxiv (Acc. ↑) Code-V2 (F1 ↑)
GCN 0.459 ± 0.006 55.71 ± 0.38 76.14 ± 1.29 71.92 ± 0.21 0.1480 ± 0.0018
GAT 0.475 ± 0.007 64.22 ± 0.46 77.17 ± 1.37 ∗ 71.81 ± 0.23 0.1513 ± 0.0011
GIN 0.387 ± 0.015 55.26 ± 1.53 76.02 ± 1.35 67.33 ± 1.47 0.1481 ± 0.0027
MPNN-Sum 0.381 ± 0.005 65.39 ± 0.47 75.19 ± 3.57 ∗ 66.11 ± 0.56 0.1470 ± 0.0017
MPNN-Max 0.468 ± 0.002 69.70 ± 0.55 77.07 ± 1.37 ∗ 71.02 ± 0.21 0.1552 ± 0.0022
PNA 0.320 ± 0.032 70.21 ± 0.15 79.05 ± 1.32 ∗ 71.21 ± 0.30 ∗ 0.1570 ± 0.0032
EGC-S 0.364 ± 0.020 66.63 ± 0.26 77.21 ± 1.10 72.19 ± 0.16 0.1528 ± 0.0025
EGC-M 0.281 ± 0.008 71.04 ± 0.45 78.18 ± 1.53 71.96 ± 0.23 0.1595 ± 0.0019

EGC-S is a single aggregator variant. We beat GAT on every dataset despite the reduction in memory

consumption. EGC-M, which uses multiple aggregators, is a clear match for PNA.

Our results are surprising given the efficiency of our approach, and raises further questions about

which aspects of GNN architecture design are most important.

Aggregator Fusion

Sparse operations are memory-bound: unstructured sparsity results in difficult to optimise memory

access patterns. If our processor spends so much time sitting idle just waiting for data to arrive from

memory, why not do some additional computation during the wait? This is the key to aggregator

fusion: apply all aggregators at once, rather than performing multiple fetches. We find this results in

an average latency increase of 19% at inference time; the naive approach results in an increase of

305%. In principle this approach can be readily integrated into upstream libraries, and applied to

architectures such as PNA as well.

Learning More About ThisWork

We release code and pretrained models on GitHub. A blog post describing our research in more depth

can be found with the QR code. Please feel welcome to contact Shyam Tailor (sat62@cam.ac.uk) with

queries and thoughts.

https://github.com/shyam196/egc
https://mlsys.cst.cam.ac.uk/research/egc
mailto:sat62@cam.ac.uk

