NetXplain: Real-time explainability of Graph Neural Networks applied to computer networks

David Pujol-Perich¹, José Suárez-Varela¹, Shihan Xiao², Bo Wu², Albert Cabellos-Aparicio¹, Pere Barlet-Ros¹

1. Introduction

D Motivation:

- Graph Neural Networks (GNN) are typically treated as black-boxes (their internal behavior is not understandable by humans).
- As all Machine Learning (ML) models, they provide statistical guarantees, which is not sufficient for applications in critical systems (e.g., computer networks).

Background:

Explainability mask \bigcirc

The explainability mask quantifies ([0,1]) the relevance of a node or an edge of the input graph to the output labels of the GNN.

State-of-the-art (SOTA) \bigcirc

Explainability Ο

- Explainability techniques aim to **identify the critical** elements of input graphs (e.g., nodes, edges) that mostly affect the GNN (represented with the explainability mask).
- These techniques enable to interpret the inner behavior of the GNN given an input sample.
- Existing solutions [1,2] are based on costly iterative optimization algorithms, which must be applied over each input sample.
- The computational cost of SOTA solutions is often **prohibitive for** real-time applications.

2. NetXplain

Proposed solution:

- Train a GNN to explain the behavior of a target GNN (previously trained for some task).
- One GNN execution vs SOTA iterative algorithms

Workflow of NetXplain:

- 1. Generate a small explainability dataset by running a (costly) SOTA algorithm over the target model (original GNN).
- 2. Train an independent GNN over the explainability dataset (generated in step 1) to produce the output explainability masks.
- Given an input graph, the resulting **NetXplain's GNN produces** 3. explainability masks equivalent to the SOTA algorithm used for training.

Real-time applications:

NetXplain enables to perform explainability in **real-time applications**.

- We focus on computer networks, as they are critical infrastructures that can greatly benefit from real-time explainability solutions:
 - 1. Test and troubleshooting: Given an input network scenario, identify the elements (e.g., links) that mostly affect the output decision of the GNN.
 - 2. Network optimization: Enhance the exploration strategy of optimizers (e.g., DRL agents) considering the critical elements reported by NetXplain.

3. Evaluation

✓ We train a NetXplain model to produce explainability masks on RouteNet [3] (a GNN model that predicts the per-source-destination packet delay in networks).

✓ Tested in three datasets with real-world network topologies (NSFNet, GBN and GEANT).

Comparison: NetXplain vs SOTA algorithms

- > NetXplain produces equivalent explainability masks to the SOTA solution (METIS [2]).
- > NetXplain makes accurate predictions even over a new network topology **unseen** during training (GBN).

References

[1] Ying, R., et al. 2019. GNNExplainer: A tool for post-hoc explanation of graph neural networks. arXiv.

[2] Meng, Z., et al. 2020. Interpreting Deep Learning-Based Networking Systems. In Proceedings of ACM SIGCOMM.

[3] Krzysztof Rusek et al. 2019. Unveiling the potential of GNN for network modeling and optimization in SDN. In ACM SOSR.

NetXplain achieves a speed-up of 7200x compared to the SOTA solution.

NSFNet	Benchmark (Metis)	98.139	2.455	
	NetXplain	0.012	0.001	
GBN	Benchmark (Metis)	150.83	1.79	
	NetXplain	0.0214	0.005	
GEANT2	Benchmark (Metis)	191.46	2.76	
	NetXplain	0.029	0.002	

Take-home messages:

- NetXplain produces explainability representations equivalent to costly SOTA algorithms.
- Thanks to the use of GNN, it generalizes over new network scenarios unseen during training.
- Its low execution cost enables to integrate it in real-time networking applications.

This work has received funding from the European Union's Horizon 2020 research and innovation programme within the framework of the NGI-POINTER Project funded under grant agreement No. 871528. This paper reflects only the authors' view; the European Commission is not responsible for any use that may be made of the information it contains. This work was also supported by the Spanish MINECO under contract TEC2017-90034-C2-1-R ALLIANCE and the Catalan Institution for Research and Advanced Studies (ICREA).

¹ Barcelona Neural Networking Center, Universitat Politècnica de Catalunya, Spain ² Network Technology Lab., Huawei Technologies Co., Ltd.

CONTACT US: <u>contactus@bnn.upc.edu</u>

