
Efficient Data Loader for Fast
Sampling-based GNN Training on Large Graphs

❑ Challenges of Existing Training Pipeline:
• High data loading cost (up to 74% in end to end training)
• Redundant data loading per epoch (~4x graph data volume)
• Low GPU utilization (~8% memory consumption)
• Sequential execution of data loading and GNN computation

We introduce PaGraph, a GNN training data
loader with caching, graph partition and pipeline

PAGRAPH DESIGN

❑ PaGraph Overview:
• Graph Store Server for serving graph data
• Trainer working on a GPU for GNN model training

• Loader for caching and prefetching graph data
• Graph partition for efficient caching on multi-GPU

training

PaGraph overview

New data loading with caching and pipelining

❑ Loader for Caching Graph Data:

• Cache vertex data with top highest out-degree
indicated from neighbor-sampling

• Mini-batch data is prefetched from both CPU shared
memory (un-cached data in Graph Store Server) and
GPU memory (cached data in Loader)

EXPERIMENTAL RESULTS

❑ Experiment Setup
• PaGraph is implemented on top DGL

and PyTorch
• Evaluate on a multi-GPU server:

• 2 Intel Xeon E5-2620v4 CPUs,
512GB RAM, 4 GTX 1080Ti GPUs

• CUDA v10.1, DGL v0.4, PyTorch v1.3

❑ Graph Partition:

• Offer full accessing view for Loader
• Avoid cross-partition access during sampling
• Achieve computation balance and load balance
• Include redundant vertices for each sub-graph
• Adopt stream-based algorithm. Compute scores for each

vertex for each sub-graph

Graph partition

❑ Multi-GPU Training:
• Leverage data parallelism for GNN model
• Each trainer works on a GPU and a sub-graph
• Communication among Trainers is only for exchanging

model gradients at the end of each mini-batch

❑ Cache Performance

• Outperform AliGraph and
Random with a cache hit ratio
close to optimal

• Achieve up to 1.5x performance
speedup over AliGraph

• Pipelining can improve the
caching efficiency

❑ Multi-GPU Performance

• 2.4x speedup of GCN training on
enwiki with 4-GPU over DGL

• Linear scalability

• Caching achieves up to 1.4x speedup
• Partitioning improves up to 28.1%
• Pipelining further reduces training

time up to 29.3%

❑ Single GPU Training Performance

• Up to 4.9x of PaGraph over DGL
• Up to 6.2x of PaGraph+PP over DGL+PP
• 78.7% loading time reduction by PaGraph

with 54% cached data on enwiki
• Pipelining can further fully hide the

loading time into computation

❑ Sampling-based GNN Training Pipeline:
• Sampling (①) – Data Loading (②-③) – Computation (④)

BACKGROUND AND MOTIVATIONS

❑ GNN Neighbor Sampling for Example:
• Bottom-up sampling, top-down forwarding

2-layer GNN sampling training leverages
2-neighbor neighbor sampling

Youhui Bai1, Cheng Li1,2, Zhiqi Lin1, Yufei Wu1, Youshan Miao3, Yunxin Liu3, Yinlong Xu1,2

USTC1, Anhui Province Key Laboratory of High Performance Computing2, Microsoft Research3

ure

❑ Effects of Optimizations

Breakdown of GCN training time

Cache efficiency on Livejournal

GCN and GraphSAGE scalability on enwiki

Training performance improvement on friendster

