

DIRECTIONAL GRAPH NETWORKS (DGN)

arxiv.org/abs/2010.02863

Dominique Beaini*, Saro Passaro*, Vincent Létourneau, William Hamilton, Gabriele Corso, Pietro Liò dominique@valencediscovery.com, sp976@cam.ac.uk

Low frequency eigenvectors are a representation of the global structure of the graph

The gradient of the eigenvectors flow in interpretable directions.

Problematic – GNNs lack expressiveness

Properties	GNN	DGN
Aggregate neighbouring features	\checkmark	\checkmark
Anisotropy based on node features/attention	\checkmark	\checkmark
Globally consistent directional flow		\checkmark
Efficiently send messages across the longest length of the graph		✓
Avoids over-smoothing and over-squashing		\checkmark
More powerful than the 1-WL isomorphism test		\checkmark
Can replicate Gabor-like filters		\checkmark
Generalize CNNs		\checkmark

acos Φ_1

 $a\cos\widehat{\Phi}_3$ $a\cos\Phi_2$ Corner to corner

and are robust to small changes.

Grid graph (7×5)

Minnesota highway roadmap $a\cos\widehat{\mathbf{\Phi}}_1$ Path from South to

Low frequency eigenvectors ϕ_k

 $a\cos \widehat{\Phi}_2$ Path from suburbs to city-center

 $a\cos\widehat{\Phi}_3$ Path from West to

Empirical results

	ZII	NC	PATTERN	CIFA	\R10	MolHIV
	No edge	Edge	No edge	No edge	Edge	No edge
Model	features	features	features	features	features	features
	MAE	MAE	% acc	% acc	% acc	% ROC-AUC
GCN	0.469		65.88	54.46		76.06
GIN	0.408		85.59	53.38		75.58
GraphSage	0.41		50.52	66.08		
GAT	0.463		75.82	65.48		
MoNet	0.407		85.48	53.43		
GatedGCN	0.422	0.363	84.48	69.19	69.37	
PNA	0.32	0.188	86.57	70.46	70.47	79.05
DGN (ours)	0.219	0.168	86.68	72.70	72.84	79.70

GNN: Graph neural network CNN: Convolutional neural network

Input graph

adjacency matrix A is

given as an input. We

Graph

then compute the

Laplacian matrix *L*.

The a-directional

ϕ_k : k-th non-zero lowest frequency eigenvector WL: Weisfeiler-Lehman

Pre-computed steps O(kE)

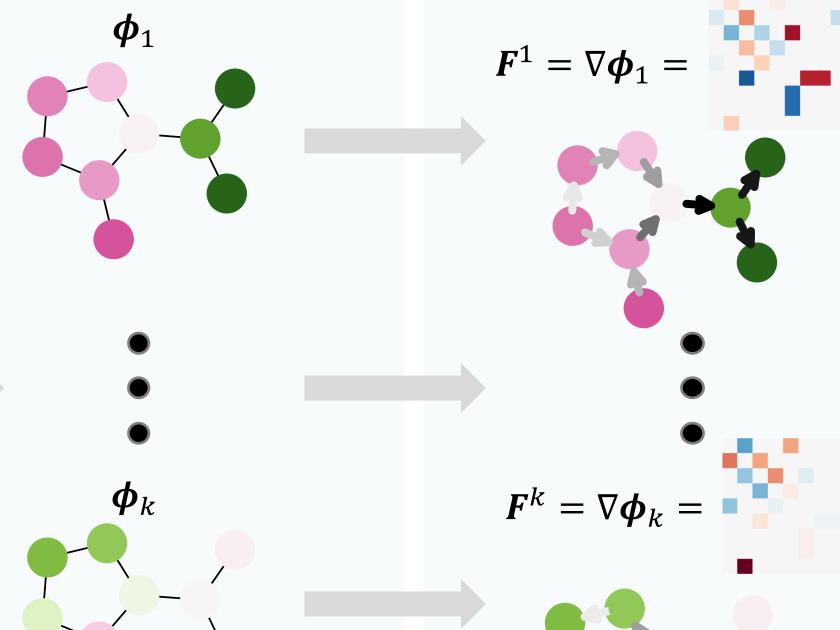
Compute first k nontrivial eigenvectors

The eigenvectors ϕ of L are computed and sorted such that ϕ_k has the k-th lowest non-zero eigenvalue.

Compute the gradient

The gradient of ϕ is a function of the edges (a matrix) such that $\nabla \boldsymbol{\phi}_{ij} = \boldsymbol{\phi}_i - \boldsymbol{\phi}_j$ if the nodes i, jare connected.

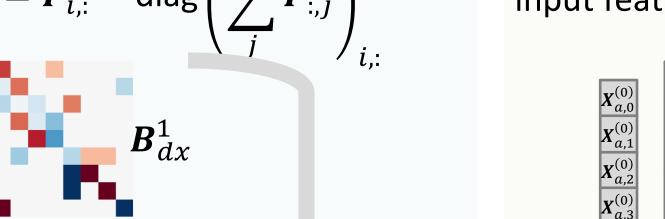
Field matrix colormap

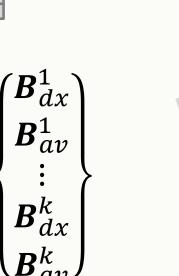


Create the aggregation matrices B

- \boldsymbol{B}_{av} : directional smoothing matrix. $\boldsymbol{B}_{av} = |\widehat{\boldsymbol{F}}|$
- \boldsymbol{B}_{dx} : directional derivative matrix.

$$(\boldsymbol{B}_{dx})_{i,:} = \widehat{\boldsymbol{F}}_{i,:} - \operatorname{diag}\left(\sum_{j} \widehat{\boldsymbol{F}}_{:,j}\right)_{i,:}$$





Graph neural network steps O(kE + kN)

 $(D^{-1}AX^{(0)})$

neighbouring features

The aggregation matrices $\boldsymbol{B}_{av,dx}^{1,...,k}$

 $\pmb{X}^{(0)}$. For \pmb{B}_{dx} we take the

are used, such as the mean

aggregation $\mathbf{D}^{-1}\mathbf{A}\mathbf{X}^{(0)}$.

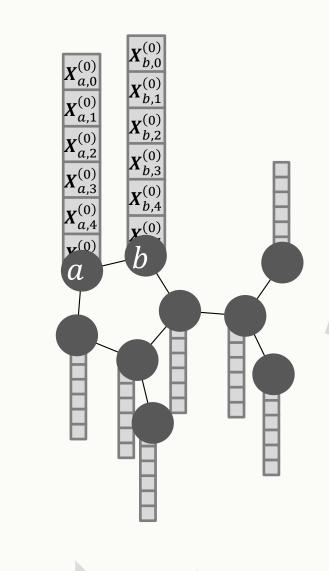
ambiguity of ϕ .

absolute value due to the sign

Other non-directional aggregators

Input graph

The feature matrix $X^{(0)}$ has N rows (the number of nodes) and n_0 columns (the number of input features).



 $|\boldsymbol{B}_{dx}^{1}\boldsymbol{X}^{(0)}|$ $\boldsymbol{B}_{av}^{1} \boldsymbol{X}^{(0)}$ $|\boldsymbol{B}_{dx}^{k}\boldsymbol{X}^{(0)}|$ $\mathbf{B}_{av}^{k} \mathbf{X}^{(0)}$

Aggregation of MLP

This is the only step with learned parameters. are used to aggregate the features

Based on the GCN method, each aggregation is followed by a multi layer perceptron (MLP) on all the features.

The MLP is applied on the columns of **Y**.

$$\mathbf{X}^{(1)} = \mathrm{MLP}(\mathbf{Y}^{(0)})$$

Next GNN layer

$$t \rightarrow t + 1$$

$$X^{(t)} \rightarrow X^{(t+1)}$$

$$X^{(0)} \rightarrow X^{(1)}$$

$$Y^{(0)} \rightarrow Y^{(1)}$$